Given a positive integer N. The task is to check if N is an unusual number or not. Print ‘YES’ if M is an unusual number else print ‘NO’.
Unusual number : In Mathematics, an unusual number is a natural number whose greatest prime factor is strictly greater than square root of n.
The first few unusual numbers are –
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51
Examples:
Input : N = 14
Output : YES
Explanation : 7 is largest prime factor of 14
and 7 is strictly greater than square root of 14
Input : N = 16
Output : NO
Explanation : 2 is largest prime factor of 16
and 2 is less than square root of 16 ( i.e 4 ).
Approach :
- Find the largest prime factor of the given number N. To find the largest prime factor of N refer this .
- Check if the largest prime factor of N is strictly greater than square root of N.
- If ‘YES’ then N is an Unusual number otherwise Not.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int largestPrimeFactor( int n)
{
int max = -1;
while (n % 2 == 0) {
max = 2;
n >>= 1;
}
for ( int i = 3; i <= sqrt (n); i += 2) {
while (n % i == 0) {
max = i;
n = n / i;
}
}
if (n > 2)
max = n;
return max;
}
bool checkUnusual( int n)
{
int factor = largestPrimeFactor(n);
if (factor > sqrt (n)) {
return true ;
}
else {
return false ;
}
}
int main()
{
int n = 14;
if (checkUnusual(n)) {
cout << "YES"
<< "\n" ;
}
else {
cout << "NO"
<< "\n" ;
}
return 0;
}
|
Java
class GFG {
static int largestPrimeFactor( int n)
{
int max = - 1 ;
while (n % 2 == 0 ) {
max = 2 ;
n >>= 1 ;
}
for ( int i = 3 ; i <= Math.sqrt(n); i += 2 ) {
while (n % i == 0 ) {
max = i;
n = n / i;
}
}
if (n > 2 )
max = n;
return max;
}
static boolean checkUnusual( int n)
{
int factor = largestPrimeFactor(n);
if (factor > Math.sqrt(n)) {
return true ;
}
else {
return false ;
}
}
public static void main(String[] args)
{
int n = 14 ;
if (checkUnusual(n)) {
System.out.println( "YES" );
}
else {
System.out.println( "NO" );
}
}
}
|
Python3
from math import sqrt
def largestPrimeFactor(n):
max = - 1
while n % 2 = = 0 :
max = 2 ;
n >> = 1 ;
for i in range ( 3 , int (sqrt(n)) + 1 , 2 ):
while n % i = = 0 :
max = i;
n = n / i;
if n > 2 :
max = n
return max
def checkUnusual(n):
factor = largestPrimeFactor(n)
if factor > sqrt(n):
return True
else :
return False
if __name__ = = '__main__' :
n = 14
if checkUnusual(n):
print ( "YES" )
else :
print ( "NO" )
|
C#
using System;
class GFG {
static int largestPrimeFactor( int n)
{
int max = -1;
while (n % 2 == 0) {
max = 2;
n >>= 1;
}
for ( int i = 3; i <= Math.Sqrt(n); i += 2) {
while (n % i == 0) {
max = i;
n = n / i;
}
}
if (n > 2)
max = n;
return max;
}
static bool checkUnusual( int n)
{
int factor = largestPrimeFactor(n);
if (factor > Math.Sqrt(n)) {
return true ;
}
else {
return false ;
}
}
public static void Main()
{
int n = 14;
if (checkUnusual(n)) {
Console.WriteLine( "YES" );
}
else {
Console.WriteLine( "NO" );
}
}
}
|
PHP
<?php
function largestPrimeFactor( $n )
{
$max = -1;
while ( $n % 2 == 0) {
$max = 2;
$n >>= 1;
}
for ( $i = 3; $i <= sqrt( $n ); $i += 2) {
while ( $n % $i == 0) {
$max = $i ;
$n = $n / $i ;
}
}
if ( $n > 2)
$max = $n ;
return $max ;
}
function checkUnusual( $n )
{
$factor = largestPrimeFactor( $n );
if ( $factor > sqrt( $n )) {
return true;
}
else {
return false;
}
}
$n = 14;
if (checkUnusual( $n )) {
echo "YES" . "\n" ;
}
else {
echo "NO" . "\n" ;
}
?>
|
Javascript
<script>
function largestPrimeFactor( n)
{
var max = -1;
while (n % 2 == 0) {
max = 2;
n >>= 1;
}
for ( var i = 3; i <= Math.sqrt(n); i += 2) {
while (n % i == 0) {
max = i;
n = n / i;
}
}
if (n > 2)
max = n;
return max;
}
function checkUnusual(n)
{
var factor = largestPrimeFactor(n);
if (factor > Math.sqrt(n)) {
return true ;
}
else {
return false ;
}
}
var n = 14;
if (checkUnusual(n)) {
document.write( "YES" );
}
else {
document.write( "NO" );
}
</script>
|
Output:
YES
Time complexity: 
Auxiliary space: 
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
10 Aug, 2021
Like Article
Save Article