Open In App
Related Articles

Check if a number is an Unusual Number or not

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a positive integer N. The task is to check if N is an unusual number or not. Print ‘YES’ if M is an unusual number else print ‘NO’.
Unusual number : In Mathematics, an unusual number is a natural number whose greatest prime factor is strictly greater than square root of n.
The first few unusual numbers are – 
 

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51 
 

Examples

Input : N = 14
Output : YES
Explanation : 7 is largest prime factor of 14
and 7 is strictly greater than square root of 14

Input : N = 16
Output : NO
Explanation : 2 is largest prime factor of 16
and 2 is less than square root of 16 ( i.e 4 ).

 

Approach : 

  1. Find the largest prime factor of the given number N. To find the largest prime factor of N refer this .
  2. Check if the largest prime factor of N is strictly greater than square root of N.
  3. If ‘YES’ then N is an Unusual number otherwise Not.

Below is the implementation of the above approach: 

C++




// C++ Program to check Unusual number
#include <bits/stdc++.h>
using namespace std;
   
// Utility function to find largest
// prime factor of a number
int largestPrimeFactor(int n)
{
    // Initialize the maximum prime factor
    // variable with the lowest one
    int max = -1;
   
    // Print the number of 2s that divide n
    while (n % 2 == 0) {
        max = 2;
        n >>= 1; // equivalent to n /= 2
    }
   
    // n must be odd at this point, thus skip
    // the even numbers and iterate only for
    // odd integers
    for (int i = 3; i <= sqrt(n); i += 2) {
        while (n % i == 0) {
            max = i;
            n = n / i;
        }
    }
   
    // This condition is to handle the case
    // when n is a prime number greater than 2
    if (n > 2)
        max = n;
   
    return max;
}
   
// Function to check Unusual number
bool checkUnusual(int n)
{
    // Get the largest Prime Factor
    // of the number
    int factor = largestPrimeFactor(n);
   
    // Check if largest prime factor
    // is greater than sqrt(n)
    if (factor > sqrt(n)) {
        return true;
    }
    else {
        return false;
    }
}
   
// Driver Code
int main()
{
    int n = 14;
   
    if (checkUnusual(n)) {
        cout << "YES"
             << "\n";
    }
    else {
        cout << "NO"
             << "\n";
    }
   
    return 0;
}


Java




// Java Program to check Unusual number
  
class GFG {
  
    // Utility function to find largest
    // prime factor of a number
    static int largestPrimeFactor(int n)
    {
        // Initialize the maximum prime factor
        // variable with the lowest one
        int max = -1;
  
        // Print the number of 2s that divide n
        while (n % 2 == 0) {
            max = 2;
            n >>= 1; // equivalent to n /= 2
        }
  
        // n must be odd at this point, thus skip
        // the even numbers and iterate only for
        // odd integers
        for (int i = 3; i <= Math.sqrt(n); i += 2) {
            while (n % i == 0) {
                max = i;
                n = n / i;
            }
        }
  
        // This condition is to handle the case
        // when n is a prime number greater than 2
        if (n > 2)
            max = n;
  
        return max;
    }
  
    // Function to check Unusual number
    static boolean checkUnusual(int n)
    {
        // Get the largest Prime Factor
        // of the number
        int factor = largestPrimeFactor(n);
  
        // Check if largest prime factor
        // is greater than sqrt(n)
        if (factor > Math.sqrt(n)) {
            return true;
        }
        else {
            return false;
        }
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int n = 14;
  
        if (checkUnusual(n)) {
            System.out.println("YES");
        }
        else {
            System.out.println("NO");
        }
    }
}


Python3




# Python Program to check Unusual number
from math import sqrt
   
# Utility function to find largest
# prime factor of a number
def largestPrimeFactor(n):
 
    # Initialize the maximum prime factor
    # variable with the lowest one
    max = -1
   
    # Print the number of 2s that divide n
    while n % 2 == 0:
        max = 2;
        n >>= 1; # equivalent to n /= 2
   
    # n must be odd at this point, thus skip
    # the even numbers and iterate only for
    # odd integers
    for i in range(3,int(sqrt(n))+1,2):
        while n % i == 0:
            max = i;
            n = n / i;
   
    # This condition is to handle the case
    # when n is a prime number greater than 2
    if n > 2:
        max = n
   
    return max
   
# Function to check Unusual number
def checkUnusual(n):
    # Get the largest Prime Factor
    # of the number
    factor = largestPrimeFactor(n)
   
    # Check if largest prime factor
    # is greater than sqrt(n)
    if factor > sqrt(n):
        return True
    else :
        return False
   
# Driver Code
if __name__ == '__main__':
     
    n = 14
   
    if checkUnusual(n):
        print("YES")
    else:
        print("NO")
 
# This code is contributed
# by Harshit Saini


C#




// C# Program to check Unusual number
  
using System;
class GFG {
  
    // Utility function to find largest
    // prime factor of a number
    static int largestPrimeFactor(int n)
    {
        // Initialize the maximum prime factor
        // variable with the lowest one
        int max = -1;
  
        // Print the number of 2s that divide n
        while (n % 2 == 0) {
            max = 2;
            n >>= 1; // equivalent to n /= 2
        }
  
        // n must be odd at this point, thus skip
        // the even numbers and iterate only for
        // odd integers
        for (int i = 3; i <= Math.Sqrt(n); i += 2) {
            while (n % i == 0) {
                max = i;
                n = n / i;
            }
        }
  
        // This condition is to handle the case
        // when n is a prime number greater than 2
        if (n > 2)
            max = n;
  
        return max;
    }
  
    // Function to check Unusual number
    static bool checkUnusual(int n)
    {
        // Get the largest Prime Factor
        // of the number
        int factor = largestPrimeFactor(n);
  
        // Check if largest prime factor
        // is greater than sqrt(n)
        if (factor > Math.Sqrt(n)) {
            return true;
        }
        else {
            return false;
        }
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 14;
  
        if (checkUnusual(n)) {
            Console.WriteLine("YES");
        }
        else {
            Console.WriteLine("NO");
        }
    }
}


PHP




<?php
// PHP Program to check Unusual number
   
// Utility function to find largest
// prime factor of a number
function largestPrimeFactor($n)
{
    // Initialize the maximum prime factor
    // variable with the lowest one
    $max = -1;
   
    // Print the number of 2s that divide n
    while ($n % 2 == 0) {
        $max = 2;
        $n >>= 1; // equivalent to n /= 2
    }
   
    // n must be odd at this point, thus skip
    // the even numbers and iterate only for
    // odd integers
    for ($i = 3; $i <= sqrt($n); $i += 2) {
        while ($n % $i == 0) {
            $max = $i;
            $n = $n / $i;
        }
    }
   
    // This condition is to handle the case
    // when n is a prime number greater than 2
    if ($n > 2)
        $max = $n;
   
    return $max;
}
   
// Function to check Unusual number
function checkUnusual($n)
{
    // Get the largest Prime Factor
    // of the number
    $factor = largestPrimeFactor($n);
   
    // Check if largest prime factor
    // is greater than sqrt(n)
    if ($factor > sqrt($n)) {
        return true;
    }
    else {
        return false;
    }
}
   
// Driver Code 
$n = 14;
 
if (checkUnusual($n)) {
    echo "YES"."\n";
}
else {
    echo "NO"."\n";
}
// This code is contributed
// by Harshit Saini
?>


Javascript




<script>
 
// javascript Program to check Unusual number
    
  
    // Utility function to find largest
    // prime factor of a number
     
    function largestPrimeFactor( n)
    {
        // Initialize the maximum prime factor
        // variable with the lowest one
         
        var max = -1;
    
        // Print the number of 2s that divide n
        while (n % 2 == 0) {
            max = 2;
            n >>= 1; // equivalent to n /= 2
        }
    
        // n must be odd at this point, thus skip
        // the even numbers and iterate only for
        // odd integers
         
        for (var i = 3; i <= Math.sqrt(n); i += 2) {
            while (n % i == 0) {
                max = i;
                n = n / i;
            }
        }
    
        // This condition is to handle the case
        // when n is a prime number greater than 2
        if (n > 2)
            max = n;
    
        return max;
    }
    
    // Function to check Unusual number
     
    function  checkUnusual(n)
    {
        // Get the largest Prime Factor
        // of the number
         
        var factor = largestPrimeFactor(n);
    
        // Check if largest prime factor
        // is greater than sqrt(n)
         
        if (factor > Math.sqrt(n)) {
            return true;
        }
        else {
            return false;
        }
    }
    
    // Driver Code
 
        var n = 14;
    
        if (checkUnusual(n)) {
            document.write("YES");
        }
        else {
            document.write("NO");
        }
         
 </script>


Output: 

YES

Time complexity: \text{O}(\sqrt{n})
Auxiliary space: \text{O}(1)
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 10 Aug, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials