# Check if a number is an Unusual Number or not

Given a positive integer N. The task is to check if N is an unusual number or not. Print ‘YES’ if M is an unusual number else print ‘NO’.
Unusual number : In Mathematics, an unusual number is a natural number whose greatest prime factor is strictly greater than square root of n.
The first few unusual numbers are –

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51

Examples

Input : N = 14
Output : YES
Explanation : 7 is largest prime factor of 14
and 7 is strictly greater than square root of 14

Input : N = 16
Output : NO
Explanation : 2 is largest prime factor of 16
and 2 is less than square root of 16 ( i.e 4 ).

Approach :

1. Find the largest prime factor of the given number N. To find the largest prime factor of N refer this .
2. Check if the largest prime factor of N is strictly greater than square root of N.
3. If ‘YES’ then N is an Unusual number otherwise Not.

Below is the implementation of the above approach:

## C++

 // C++ Program to check Unusual number  #include  using namespace std;      // Utility function to find largest  // prime factor of a number  int largestPrimeFactor(int n)  {      // Initialize the maximum prime factor      // variable with the lowest one      int max = -1;          // Print the number of 2s that divide n      while (n % 2 == 0) {          max = 2;          n >>= 1; // equivalent to n /= 2      }          // n must be odd at this point, thus skip      // the even numbers and iterate only for      // odd integers      for (int i = 3; i <= sqrt(n); i += 2) {          while (n % i == 0) {              max = i;              n = n / i;          }      }          // This condition is to handle the case      // when n is a prime number greater than 2      if (n > 2)          max = n;          return max;  }      // Function to check Unusual number  bool checkUnusual(int n)  {      // Get the largest Prime Factor      // of the number      int factor = largestPrimeFactor(n);          // Check if largest prime factor      // is greater than sqrt(n)      if (factor > sqrt(n)) {          return true;      }      else {          return false;      }  }      // Driver Code  int main()  {      int n = 14;          if (checkUnusual(n)) {          cout << "YES"              << "\n";      }      else {          cout << "NO"              << "\n";      }          return 0;  }

## Java

 // Java Program to check Unusual number    class GFG {        // Utility function to find largest     // prime factor of a number     static int largestPrimeFactor(int n)     {         // Initialize the maximum prime factor         // variable with the lowest one         int max = -1;            // Print the number of 2s that divide n         while (n % 2 == 0) {             max = 2;             n >>= 1; // equivalent to n /= 2         }            // n must be odd at this point, thus skip         // the even numbers and iterate only for         // odd integers         for (int i = 3; i <= Math.sqrt(n); i += 2) {             while (n % i == 0) {                 max = i;                 n = n / i;             }         }            // This condition is to handle the case         // when n is a prime number greater than 2         if (n > 2)             max = n;            return max;     }        // Function to check Unusual number     static boolean checkUnusual(int n)     {         // Get the largest Prime Factor         // of the number         int factor = largestPrimeFactor(n);            // Check if largest prime factor         // is greater than sqrt(n)         if (factor > Math.sqrt(n)) {             return true;         }         else {             return false;         }     }        // Driver Code     public static void main(String[] args)     {         int n = 14;            if (checkUnusual(n)) {             System.out.println("YES");         }         else {             System.out.println("NO");         }     } }

## Python3

 # Python Program to check Unusual number  from math import sqrt     # Utility function to find largest  # prime factor of a number  def largestPrimeFactor(n):       # Initialize the maximum prime factor      # variable with the lowest one      max = -1         # Print the number of 2s that divide n      while n % 2 == 0:         max = 2;          n >>= 1; # equivalent to n /= 2          # n must be odd at this point, thus skip      # the even numbers and iterate only for      # odd integers      for i in range(3,int(sqrt(n))+1,2):          while n % i == 0:             max = i;              n = n / i;          # This condition is to handle the case      # when n is a prime number greater than 2      if n > 2:         max = n         return max     # Function to check Unusual number  def checkUnusual(n):     # Get the largest Prime Factor      # of the number      factor = largestPrimeFactor(n)          # Check if largest prime factor      # is greater than sqrt(n)      if factor > sqrt(n):          return True     else :         return False     # Driver Code  if __name__ == '__main__':           n = 14         if checkUnusual(n):          print("YES")     else:         print("NO")   # This code is contributed  # by Harshit Saini

## C#

 // C# Program to check Unusual number    using System; class GFG {        // Utility function to find largest     // prime factor of a number     static int largestPrimeFactor(int n)     {         // Initialize the maximum prime factor         // variable with the lowest one         int max = -1;            // Print the number of 2s that divide n         while (n % 2 == 0) {             max = 2;             n >>= 1; // equivalent to n /= 2         }            // n must be odd at this point, thus skip         // the even numbers and iterate only for         // odd integers         for (int i = 3; i <= Math.Sqrt(n); i += 2) {             while (n % i == 0) {                 max = i;                 n = n / i;             }         }            // This condition is to handle the case         // when n is a prime number greater than 2         if (n > 2)             max = n;            return max;     }        // Function to check Unusual number     static bool checkUnusual(int n)     {         // Get the largest Prime Factor         // of the number         int factor = largestPrimeFactor(n);            // Check if largest prime factor         // is greater than sqrt(n)         if (factor > Math.Sqrt(n)) {             return true;         }         else {             return false;         }     }        // Driver Code     public static void Main()     {         int n = 14;            if (checkUnusual(n)) {             Console.WriteLine("YES");         }         else {             Console.WriteLine("NO");         }     } }

## PHP

 >= 1; // equivalent to n /= 2      }          // n must be odd at this point, thus skip      // the even numbers and iterate only for      // odd integers      for ($i = 3; $i <= sqrt($n); $i += 2) {          while ($n % $i == 0) {              $max = $i;              $n = $n / $i;   }   }     // This condition is to handle the case   // when n is a prime number greater than 2   if ($n > 2)          $max = $n;          return $max;  }    // Function to check Unusual number  function checkUnusual($n)  {      // Get the largest Prime Factor      // of the number      $factor = largestPrimeFactor($n);          // Check if largest prime factor     // is greater than sqrt(n)      if ($factor > sqrt($n)) {          return true;      }      else {          return false;      }  }      // Driver Code   $n = 14;  if (checkUnusual($n)) {      echo "YES"."\n";  }  else {      echo "NO"."\n";  }  // This code is contributed  // by Harshit Saini  ?>

## Javascript

 

Output:

YES

Time complexity:
Auxiliary space:

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next