Skip to content
Related Articles

Related Articles

Improve Article

Check if a given number divides the sum of the factorials of its digits

  • Last Updated : 20 May, 2021

Given an integer N, the task is to check whether N divides the sum of the factorials of its digits.

Examples: 

Input: N = 19 
Output: Yes 
1! + 9! = 1 + 362880 = 362881, which is divisible by 19.

Input: N = 20 
Output: No 
0! + 2! = 1 + 4 = 5, which is not divisible by 20.  

Approach: First, store the factorials of all the digits from 0 to 9 in an array. And, for the given number N check if it divides the sum of the factorials of its digits.



Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if n divides
// the sum of the factorials of its digits
bool isPossible(int n)
{
 
    // To store factorials of digits
    int fac[10];
    fac[0] = fac[1] = 1;
 
    for (int i = 2; i < 10; i++)
        fac[i] = fac[i - 1] * i;
 
    // To store sum of the factorials
    // of the digits
    int sum = 0;
 
    // Store copy of the given number
    int x = n;
 
    // Store sum of the factorials
    // of the digits
    while (x) {
        sum += fac[x % 10];
        x /= 10;
    }
 
    // If it is divisible
    if (sum % n == 0)
        return true;
 
    return false;
}
 
// Driver code
int main()
{
    int n = 19;
 
    if (isPossible(n))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function that returns true if n divides
    // the sum of the factorials of its digits
    static boolean isPossible(int n)
    {
     
        // To store factorials of digits
        int fac[] = new int[10];
        fac[0] = fac[1] = 1;
     
        for (int i = 2; i < 10; i++)
            fac[i] = fac[i - 1] * i;
     
        // To store sum of the factorials
        // of the digits
        int sum = 0;
     
        // Store copy of the given number
        int x = n;
     
        // Store sum of the factorials
        // of the digits
        while (x != 0)
        {
            sum += fac[x % 10];
            x /= 10;
        }
     
        // If it is divisible
        if (sum % n == 0)
            return true;
     
        return false;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 19;
     
        if (isPossible(n))
            System.out.println("Yes");
        else
            System.out.println("No");
     
    }
}
 
// This code is contributed by Ryuga

Python3




# Python 3 implementation of the approach
 
# Function that returns true if n divides
# the sum of the factorials of its digits
def isPossible(n):
     
    # To store factorials of digits
    fac = [0 for i in range(10)]
    fac[0] = 1
    fac[1] = 1
 
    for i in range(2, 10, 1):
        fac[i] = fac[i - 1] * i
 
    # To store sum of the factorials
    # of the digits
    sum = 0
 
    # Store copy of the given number
    x = n
 
    # Store sum of the factorials
    # of the digits
    while (x):
        sum += fac[x % 10]
        x = int(x / 10)
 
    # If it is divisible
    if (sum % n == 0):
        return True
 
    return False
 
# Driver code
if __name__ == '__main__':
    n = 19
 
    if (isPossible(n)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
using System;
class GFG
{
     
    // Function that returns true if n divides
    // the sum of the factorials of its digits
    static bool isPossible(int n)
    {
     
        // To store factorials of digits
        int[] fac = new int[10];
        fac[0] = fac[1] = 1;
     
        for (int i = 2; i < 10; i++)
            fac[i] = fac[i - 1] * i;
     
        // To store sum of the factorials
        // of the digits
        int sum = 0;
     
        // Store copy of the given number
        int x = n;
     
        // Store sum of the factorials
        // of the digits
        while (x != 0)
        {
            sum += fac[x % 10];
            x /= 10;
        }
     
        // If it is divisible
        if (sum % n == 0)
            return true;
     
        return false;
    }
     
    // Driver code
    public static void Main ()
    {
        int n = 19;
     
        if (isPossible(n))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by Code_Mech.

PHP




<?php
// PHP implementation of the approach
 
// Function that returns true if n divides
// the sum of the factorials of its digits
function isPossible($n)
{
 
    // To store factorials of digits
    $fac = array();
    $fac[0] = $fac[1] = 1;
 
    for ($i = 2; $i < 10; $i++)
        $fac[$i] = $fac[$i - 1] * $i;
 
    // To store sum of the factorials
    // of the digits
    $sum = 0;
 
    // Store copy of the given number
    $x = $n;
 
    // Store sum of the factorials
    // of the digits
    while ($x)
    {
        $sum += $fac[$x % 10];
        $x /= 10;
    }
 
    // If it is divisible
    if ($sum % $n == 0)
        return true;
 
    return false;
}
 
// Driver code
$n = 19;
 
if (isPossible($n))
    echo "Yes";
else
    echo "No";
 
// This code is contributed by Akanksha Rai
?>

Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function that returns true if n divides
// the sum of the factorials of its digits
function isPossible(n)
{
     
    // To store factorials of digits
    var fac = new Array(10);
    fac[0] = fac[1] = 1;
 
    for(var i = 2; i < 10; i++)
        fac[i] = fac[i - 1] * i;
 
    // To store sum of the factorials
    // of the digits
    var sum = 0;
 
    // Store copy of the given number
    var x = n;
 
    // Store sum of the factorials
    // of the digits
    while (x != 0)
    {
        sum += fac[x % 10];
        x = parseInt(x / 10);
    }
 
    // If it is divisible
    if (sum % n == 0)
        return true;
 
    return false;
}
 
// Driver Code
var n = 19;
     
if (isPossible(n))
    document.write("Yes");
else
    document.write("No");
   
// This code is contributed by Khushboogoyal499
 
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :