Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Calculate pressure of a real gas using Van der Waal’s Equation

  • Difficulty Level : Easy
  • Last Updated : 21 Apr, 2021

Given integers V, T, and n representing the volume, temperature and the number of moles of a real gas, the task is to calculate the pressure P of the gas using Van der Waal’s Equation for real gas.

Van der Waal’s Equation for Real Gas:
( P + a * n2 / V2 ) * (V – n * b) = n R T) 
where, average attraction between particles (a) = 1.360, 
volume excluded by a mole of particles (b) = 0.03186, 
Universal Gas constant (R) = 8.314

Examples:

Input: V = 5, T = 275, n = 6
Output: 2847.64

Input: V = 7, T = 300, n = 10
Output: 3725.43



Approach: To solve the problem, simply calculate the pressure P of real gas by using the equation P = ((n * R * T) / (V — n * b)) — (a* n * n) / (V * V) and print the result. 

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the pressure of a
// real gas using Van der Wall's equation
void pressure_using_vanderwall(double V,
                               double T, double n)
{
 
    double a = 1.382;
    double b = 0.031;
    double R = 8.314;
 
    // Calculating pressure
    double P = ((n * R * T) / (V - n * b))
               - (a * n * n) / (V * V);
 
    // Print the obtained result
    cout << P << endl;
}
 
// Driver code
int main()
{
 
    double V = 7, T = 300, n = 10;
    pressure_using_vanderwall(V, T, n);
    return 0;
}

Java




// Java program to implement
// the above approach
class GFG{
     
// Function to calculate the pressure of a
// real gas using Van der Wall's equation
public static void pressure_using_vanderwall(double V,
                                             double T,
                                             double n)
{
    double a = 1.382;
    double b = 0.031;
    double R = 8.314;
  
    // Calculating pressure
    double P = ((n * R * T) / (V - n * b)) -
                (a * n * n) / (V * V);
  
    // Print the obtained result
    System.out.println(String.format("%.2f", P));
}
 
// Driver Code
public static void main(String[] args)
{
    double V = 7, T = 300, n = 10;
     
    pressure_using_vanderwall(V, T, n);
}
}
 
// This code is contributed by divyesh072019

Python3




# Python3 Program to implement
# the above approach
 
# Function to calculate the pressure of a
# real gas using Van der Wall's equation
def pressure_using_vanderwall(V, T, n):
 
    a = 1.382
    b = 0.031
    R = 8.314
 
    # Calculating pressure
    P = ((n * R * T) / (V - n * b)) - (a * n * n) / (V * V)
 
    # Print the obtained result
    print(round(P, 2))
 
# Driver code
V, T, n = 7, 300, 10
pressure_using_vanderwall(V, T, n)
 
# This code is contributed by divyeshrabadiya07

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
      
    // Function to calculate the pressure of a
    // real gas using Van der Wall's equation
    public static void pressure_using_vanderwall(double V,
                                                 double T,
                                                 double n)
    {
        double a = 1.382;
        double b = 0.031;
        double R = 8.314;
       
        // Calculating pressure
        double P = ((n * R * T) / (V - n * b)) -
                    (a * n * n) / (V * V);
       
        // Print the obtained result
        Console.WriteLine(Math.Round(P, 2));
    }
      
    // Driver Code
    public static void Main(String[] args)
    {
        double V = 7, T = 300, n = 10;
          
        pressure_using_vanderwall(V, T, n);
    }
}
  
// This code is contributed by AnkitRai01

Javascript




<script>
    // Javascript program to implement the above approach
     
    // Function to calculate the pressure of a
    // real gas using Van der Wall's equation
    function pressure_using_vanderwall(V, T, n)
    {
        let a = 1.382;
        let b = 0.031;
        let R = 8.314;
        
        // Calculating pressure
        let P = ((n * R * T) / (V - n * b)) - (a * n * n) / (V * V);
        
        // Print the obtained result
        document.write(P.toFixed(2));
    }
     
    let V = 7, T = 300, n = 10;
      pressure_using_vanderwall(V, T, n);
     
    // This code is contributed by decode2207.
</script>
Output: 
3725.43

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :