Skip to content
Related Articles

Related Articles

Improve Article

Arrange array elements such that last digit of an element is equal to first digit of the next element

  • Last Updated : 05 Feb, 2021

Given an array arr[] of integers, the task is to arrange the array elements such that the last digit of an element is equal to first digit of the next element.

Examples: 

Input: arr[] = {123, 321} 
Output: 123 321

Input: arr[] = {451, 378, 123, 1254} 
Output: 1254 451 123 378 
 

Naive approach: Find all the permutations of the array elements and then print the arranged array which meets the required condition. The time complexity of this approach is O(N!)



Efficient approach: Create a directed graph where there will be a directed edge from a node A to node B if the last digit of the number represented by Node A is equal to the first digit of the number represented by Node B. Now, find the Eulerian path for the graph formed. The complexity of the above algorithm is O(E * E) where E is the number of edges in the graph.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// To store the array elements
vector<string> arr;
 
// Adjacency list for the graph nodes
vector<vector<int> > graph;
 
// To store the euler path
vector<string> path;
 
// Print eulerian path
bool print_euler(int i, int visited[], int count)
{
    // Mark node as visited
    // and increase the count
    visited[i] = 1;
    count++;
 
    // If all the nodes are visited
    // then we have traversed the euler path
    if (count == graph.size()) {
        path.push_back(arr[i]);
        return true;
    }
 
    // Check if the node lies in euler path
    bool b = false;
 
    // Traverse through remaining edges
    for (int j = 0; j < graph[i].size(); j++)
        if (visited[graph[i][j]] == 0) {
            b |= print_euler(graph[i][j], visited, count);
        }
 
    // If the euler path is found
    if (b) {
        path.push_back(arr[i]);
        return true;
    }
 
    // Else unmark the node
    else {
        visited[i] = 0;
        count--;
        return false;
    }
}
 
// Function to create the graph and
// print the required path
void connect()
{
    int n = arr.size();
    graph.clear();
    graph.resize(n);
 
    // Connect the nodes
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (i == j)
                continue;
 
            // If the last character matches with the
            // first character
            if (arr[i][arr[i].length() - 1] == arr[j][0]) {
                graph[i].push_back(j);
            }
        }
    }
 
    // Print the path
    for (int i = 0; i < n; i++) {
        int visited[n] = { 0 }, count = 0;
 
        // If the euler path starts
        // from the ith node
        if (print_euler(i, visited, count))
            break;
    }
 
    // Print the euler path
    for (int i = path.size() - 1; i >= 0; i--) {
        cout << path[i];
        if (i != 0)
            cout << " ";
    }
}
// Driver code
int main()
{
    arr.push_back("451");
    arr.push_back("378");
    arr.push_back("123");
    arr.push_back("1254");
 
    // Create graph and print the path
    connect();
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
 
// To store the array elements
static List<String> arr = new ArrayList<String>();
 
// Adjacency list for the graph nodes
static List<List<Integer>> graph = new ArrayList<List<Integer>>();
 
// To store the euler path
static List<String> path = new ArrayList<String>();
 
// Print eulerian path
static boolean print_euler(int i, int []visited,
                           int count)
{
     
    // Mark node as visited
    // and increase the count
    visited[i] = 1;
    count++;
 
    // If all the nodes are visited
    // then we have traversed the euler path
    if (count == graph.size())
    {
        path.add(arr.get(i));
        return true;
    }
 
    // Check if the node lies in euler path
    boolean b = false;
 
    // Traverse through remaining edges
    for(int j = 0; j < graph.get(i).size(); j++)
        if (visited[graph.get(i).get(j)] == 0)
        {
            b |= print_euler(graph.get(i).get(j),
                             visited, count);
        }
 
    // If the euler path is found
    if (b)
    {
        path.add(arr.get(i));
        return true;
    }
 
    // Else unmark the node
    else
    {
        visited[i] = 0;
        count--;
        return false;
    }
}
 
// Function to create the graph and
// print the required path
static void connect()
{
    int n = arr.size();
    graph = new ArrayList<List<Integer>>(n);
 
    for(int i = 0; i < n; i++)
    {
        graph.add(new ArrayList<Integer>());
    }
     
    // Connect the nodes
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            if (i == j)
                continue;
 
            // If the last character matches with the
            // first character
            if (arr.get(i).charAt((arr.get(i).length()) - 1) ==
                arr.get(j).charAt(0))
            {
                graph.get(i).add(j);
            }
        }
    }
 
    // Print the path
    for(int i = 0; i < n; i++)
    {
        int []visited = new int[n];
        int count = 0;
 
        // If the euler path starts
        // from the ith node
        if (print_euler(i, visited, count))
            break;
    }
 
    // Print the euler path
    for(int i = path.size() - 1; i >= 0; i--)
    {
        System.out.print(path.get(i));
         
        if (i != 0)
            System.out.print(" ");
    }
}
 
// Driver code
public static void main(String []args)
{
    arr.add("451");
    arr.add("378");
    arr.add("123");
    arr.add("1254");
 
    // Create graph and print the path
    connect();
}
}
 
// This code is contributed by pratham76

Python3




# Python3 implementation of the approach
 
# Print eulerian path
 
 
def print_euler(i, visited, count):
 
    # Mark node as visited
    # and increase the count
    visited[i] = 1
    count += 1
 
    # If all the nodes are visited then
    # we have traversed the euler path
    if count == len(graph):
        path.append(arr[i])
        return True
 
    # Check if the node lies in euler path
    b = False
 
    # Traverse through remaining edges
    for j in range(0, len(graph[i])):
        if visited[graph[i][j]] == 0:
            b |= print_euler(graph[i][j], visited, count)
 
    # If the euler path is found
    if b:
        path.append(arr[i])
        return True
 
    # Else unmark the node
    else:
        visited[i] = 0
        count -= 1
        return False
 
# Function to create the graph
# and print the required path
 
 
def connect():
 
    n = len(arr)
    # Connect the nodes
    for i in range(0, n):
        for j in range(0, n):
            if i == j:
                continue
 
            # If the last character matches
            # with the first character
            if arr[i][-1] == arr[j][0]:
                graph[i].append(j)
 
    # Print the path
    for i in range(0, n):
        visited = [0] * n
        count = 0
 
        # If the euler path starts
        # from the ith node
        if print_euler(i, visited, count):
            break
 
    # Print the euler path
    for i in range(len(path) - 1, -1, -1):
        print(path[i], end="")
        if i != 0:
            print(" ", end="")
 
 
# Driver code
if __name__ == "__main__":
 
    # To store the array elements
    arr = []
    arr.append("451")
    arr.append("378")
    arr.append("123")
    arr.append("1254")
 
    # Adjacency list for the graph nodes
    graph = [[] for i in range(len(arr))]
 
    # To store the euler path
    path = []
 
    # Create graph and print the path
    connect()
 
# This code is contributed by Rituraj Jain

C#




// C# implementation of the approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
 
// To store the array elements
static List<string> arr = new List<string>();
 
// Adjacency list for the graph nodes
static List<List<int> > graph=  new List<List<int>>();
 
// To store the euler path
static List<string> path = new List<string>();
 
// Print eulerian path
static bool print_euler(int i, int []visited, int count)
{
    // Mark node as visited
    // and increase the count
    visited[i] = 1;
    count++;
 
    // If all the nodes are visited
    // then we have traversed the euler path
    if (count == graph.Count) {
        path.Add(arr[i]);
        return true;
    }
 
    // Check if the node lies in euler path
    bool b = false;
 
    // Traverse through remaining edges
    for (int j = 0; j < graph[i].Count; j++)
        if (visited[graph[i][j]] == 0) {
            b |= print_euler(graph[i][j], visited, count);
        }
 
    // If the euler path is found
    if (b) {
        path.Add(arr[i]);
        return true;
    }
 
    // Else unmark the node
    else {
        visited[i] = 0;
        count--;
        return false;
    }
}
 
// Function to create the graph and
// print the required path
static void connect()
{
    int n = arr.Count;
    graph=new List<List<int>>(n);
 
    for(int i = 0; i < n; i++)
    {
        graph.Add(new List<int>());
    }
     
    // Connect the nodes
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (i == j)
                continue;
 
            // If the last character matches with the
            // first character
            if (arr[i][(arr[i].Length) - 1] == arr[j][0]) {
                graph[i].Add(j);
            }
        }
    }
 
    // Print the path
    for (int i = 0; i < n; i++) {
 
        int []visited = new int[n];
        int count = 0;
 
        // If the euler path starts
        // from the ith node
        if (print_euler(i, visited, count))
            break;
    }
 
    // Print the euler path
    for (int i = path.Count - 1; i >= 0; i--) {
        Console.Write(path[i]);
        if (i != 0)
            Console.Write(" ");
    }
}
 
// Driver code
public static void Main(params string []args)
{
    arr.Add("451");
    arr.Add("378");
    arr.Add("123");
    arr.Add("1254");
 
    // Create graph and print the path
    connect();
}
}
 
// This code is contributed by rutvik_56.
Output: 
1254 451 123 378

 

Time Complexity : O(N* log(N))

Auxiliary Space: O(N)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :