# Count of pairs (A, B) in range 1 to N such that last digit of A is equal to the first digit of B

Given a number N, the task is to find the number of pairs (A, B) in the range [1, N] such that the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B.
Examples:

Input: N = 25
Output: 17
Explanation:
The pairs are:
(1, 1), (1, 11), (2, 2), (2, 22), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (11, 1), (11, 11), (12, 21), (21, 12), (22, 2), (22, 22)
Input: N = 100
Output: 108

Approach: For each pair of integers (i, j)(0 ? i, j ? 9), let us define ci, j (1 ? k ? N) which is the count of the first digit of k is equal to i, and the last digit is equal to j. By using ci, j, the answer for the problem can be calculated by ?i=09 ?j=09 ci, j * cj, i .
Below is the implementation of the above approach:

## CPP

 `// C++ program to implement the above approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to Count of pairs (A, B) in range 1 to N ` `int` `pairs(``int` `n) ` `{ ` `    ``vector > c(10, vector<``int``>(10, 0)); ` ` `  `    ``int` `tmp = 1; ` ` `  `    ``// count C i, j ` `    ``for` `(``int` `i = 1; i <= n; i++) { ` `        ``if` `(i >= tmp * 10) ` `            ``tmp *= 10; ` `        ``c[i / tmp][i % 10]++; ` `    ``} ` ` `  `    ``// Calculate number of pairs ` `    ``long` `long` `ans = 0; ` `    ``for` `(``int` `i = 1; i < 10; i++) ` `        ``for` `(``int` `j = 1; j < 10; j++) ` `            ``ans += (``long` `long``)c[i][j] * c[j][i]; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 25; ` ` `  `    ``// Function call ` `    ``cout << pairs(n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to implement the above approach ` ` `  `class` `GFG{ ` `  `  `// Function to Count of pairs (A, B) in range 1 to N ` `static` `int` `pairs(``int` `n) ` `{ ` `    ``int` `[][]c = ``new` `int``[``10``][``10``]; ` `  `  `    ``int` `tmp = ``1``; ` `  `  `    ``// count C i, j ` `    ``for` `(``int` `i = ``1``; i <= n; i++) { ` `        ``if` `(i >= tmp * ``10``) ` `            ``tmp *= ``10``; ` `        ``c[i / tmp][i % ``10``]++; ` `    ``} ` `  `  `    ``// Calculate number of pairs ` `    ``int` `ans = ``0``; ` `    ``for` `(``int` `i = ``1``; i < ``10``; i++) ` `        ``for` `(``int` `j = ``1``; j < ``10``; j++) ` `            ``ans += c[i][j] * c[j][i]; ` `  `  `    ``return` `ans; ` `} ` `  `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `n = ``25``; ` `  `  `    ``// Function call ` `    ``System.out.print(pairs(n)); ` `  `  `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

## Python3

 `# Python3 program to implement the above approach ` ` `  `# Function to Count of pairs (A, B) in range 1 to N ` `def` `pairs(n): ` `    ``c ``=` `[[``0` `for` `i ``in` `range``(``10``)] ``for` `i ``in` `range``(``10``)] ` ` `  `    ``tmp ``=` `1` ` `  `    ``# count C i, j ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `        ``if` `(i >``=` `tmp ``*` `10``): ` `            ``tmp ``*``=` `10` `        ``c[i ``/``/` `tmp][i ``%` `10``] ``+``=` `1` ` `  `    ``# Calculate number of pairs ` `    ``ans ``=` `0` `    ``for` `i ``in` `range``(``1``, ``10``): ` `        ``for` `j ``in` `range``(``1``, ``10``): ` `            ``ans ``+``=` `c[i][j] ``*` `c[j][i] ` ` `  `    ``return` `ans ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``n ``=` `25` ` `  `    ``# Function call ` `    ``print``(pairs(n)) ` ` `  `# This code is contributed by mohit kumar 29     `

## C#

 `// C# program to implement the above approach ` `using` `System; ` ` `  `class` `GFG{ ` `   `  `// Function to Count of pairs (A, B) in range 1 to N ` `static` `int` `pairs(``int` `n) ` `{ ` `    ``int` `[,]c = ``new` `int``[10, 10]; ` `   `  `    ``int` `tmp = 1; ` `   `  `    ``// count C i, j ` `    ``for` `(``int` `i = 1; i <= n; i++) { ` `        ``if` `(i >= tmp * 10) ` `            ``tmp *= 10; ` `        ``c[i / tmp, i % 10]++; ` `    ``} ` `   `  `    ``// Calculate number of pairs ` `    ``int` `ans = 0; ` `    ``for` `(``int` `i = 1; i < 10; i++) ` `        ``for` `(``int` `j = 1; j < 10; j++) ` `            ``ans += c[i, j] * c[j, i]; ` `   `  `    ``return` `ans; ` `} ` `   `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `n = 25; ` `   `  `    ``// Function call ` `    ``Console.Write(pairs(n)); ` `   `  `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

## Javascript

 ` `

Output:

`17`

Time Complexity: O(N)

Auxiliary Space: O(10*10)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next