Skip to content
Related Articles

Related Articles

Improve Article

Area of the biggest possible rhombus that can be inscribed in a rectangle

  • Last Updated : 15 Mar, 2021

Given a rectangle of length l and breadth b, the task is to find the largest rhombus that can be inscribed in the rectangle.
Examples
 

Input : l = 5, b = 4
Output : 10

Input : l = 16, b = 6
Output : 48

 

 

From the figure, we can see, the biggest rhombus that could be inscribed within the rectangle will have its diagonals equal to the length & breadth of the rectangle. 
So, Area of rhombus, A = (l*b)/2
Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest rhombus
// which can be inscribed within the rectangle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the biggest rhombus
float rhombusarea(float l, float b)
{
    // the length and breadth cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
int main()
{
    float l = 16, b = 6;
    cout << rhombusarea(l, b) << endl;
    return 0;
}

Java




// Java Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
import java.io.*;
 
class GFG
{
 
// Function to find the area
// of the biggest rhombus
static float rhombusarea(float l,
                         float b)
{
    // the length and breadth
    // cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
public static void main (String[] args)
{
    float l = 16, b = 6;
    System.out.println(rhombusarea(l, b));
}
}
 
// This code is contributed
// by inder_verma

Python3




# Python 3 Program to find the biggest rhombus
# which can be inscribed within the rectangle
 
 
# Function to find the area
# of the biggest rhombus
def rhombusarea(l,b):
    # the length and breadth cannot be negative
    if (l < 0 or b < 0):
        return -1
 
    # area of the rhombus
    return (l * b) / 2
 
# Driver code
if __name__ == '__main__':
    l = 16
    b = 6
    print(rhombusarea(l, b))

C#




// C# Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
using System;
 
class GFG
{
 
// Function to find the area
// of the biggest rhombus
static float rhombusarea(float l,
                        float b)
{
    // the length and breadth
    // cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
public static void Main ()
{
    float l = 16, b = 6;
    Console.WriteLine(rhombusarea(l, b));
}
}
 
// This code is contributed
// by shs

PHP




<?php
// PHP Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
 
// Function to find the area
// of the biggest rhombus
function rhombusarea($l, $b)
{
    // the length and breadth
    // cannot be negative
    if ($l < 0 || $b < 0)
        return -1;
 
    // area of the rhombus
    return ($l * $b) / 2;
}
 
// Driver code
$l = 16; $b = 6;
echo rhombusarea($l, $b) . "\n";
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

Javascript




<script>
 
// javascript Program to find the
// biggest rhombus which can be
// inscribed within the rectangle
 
// Function to find the area
// of the biggest rhombus
function rhombusarea(l,b)
{
    // the length and breadth
    // cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // area of the rhombus
    return (l * b) / 2;
}
 
// Driver code
var l = 16, b = 6;
document.write(rhombusarea(l, b));
 
// This code contributed by Princi Singh
 
</script>
Output: 
48

 

Attention reader! Don’t stop learning now. Participate in the Scholorship Test for First-Step-to-DSA Course for Class 9 to 12 students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :