# Area of the biggest possible rhombus that can be inscribed in a rectangle

Given a rectangle of length **l** and breadth **b**, the task is to find the largest rhombus that can be inscribed in the rectangle.**Examples**:

Input : l = 5, b = 4 Output : 10 Input : l = 16, b = 6 Output : 48

From the figure, we can see, the biggest rhombus that could be inscribed within the rectangle will have its diagonals equal to the length & breadth of the rectangle.

So, Area of rhombus, **A = (l*b)/2**

Below is the implementation of the above approach:

## C++

`// C++ Program to find the biggest rhombus` `// which can be inscribed within the rectangle` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the area` `// of the biggest rhombus` `float` `rhombusarea(` `float` `l, ` `float` `b)` `{` ` ` `// the length and breadth cannot be negative` ` ` `if` `(l < 0 || b < 0)` ` ` `return` `-1;` ` ` `// area of the rhombus` ` ` `return` `(l * b) / 2;` `}` `// Driver code` `int` `main()` `{` ` ` `float` `l = 16, b = 6;` ` ` `cout << rhombusarea(l, b) << endl;` ` ` `return` `0;` `}` |

## Java

`// Java Program to find the` `// biggest rhombus which can be` `// inscribed within the rectangle` `import` `java.io.*;` `class` `GFG` `{` `// Function to find the area` `// of the biggest rhombus` `static` `float` `rhombusarea(` `float` `l,` ` ` `float` `b)` `{` ` ` `// the length and breadth` ` ` `// cannot be negative` ` ` `if` `(l < ` `0` `|| b < ` `0` `)` ` ` `return` `-` `1` `;` ` ` `// area of the rhombus` ` ` `return` `(l * b) / ` `2` `;` `}` `// Driver code` `public` `static` `void` `main (String[] args)` `{` ` ` `float` `l = ` `16` `, b = ` `6` `;` ` ` `System.out.println(rhombusarea(l, b));` `}` `}` `// This code is contributed` `// by inder_verma` |

## Python3

`# Python 3 Program to find the biggest rhombus` `# which can be inscribed within the rectangle` `# Function to find the area` `# of the biggest rhombus` `def` `rhombusarea(l,b):` ` ` `# the length and breadth cannot be negative` ` ` `if` `(l < ` `0` `or` `b < ` `0` `):` ` ` `return` `-` `1` ` ` `# area of the rhombus` ` ` `return` `(l ` `*` `b) ` `/` `2` `# Driver code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `l ` `=` `16` ` ` `b ` `=` `6` ` ` `print` `(rhombusarea(l, b))` |

## C#

`// C# Program to find the` `// biggest rhombus which can be` `// inscribed within the rectangle` `using` `System;` `class` `GFG` `{` `// Function to find the area` `// of the biggest rhombus` `static` `float` `rhombusarea(` `float` `l,` ` ` `float` `b)` `{` ` ` `// the length and breadth` ` ` `// cannot be negative` ` ` `if` `(l < 0 || b < 0)` ` ` `return` `-1;` ` ` `// area of the rhombus` ` ` `return` `(l * b) / 2;` `}` `// Driver code` `public` `static` `void` `Main ()` `{` ` ` `float` `l = 16, b = 6;` ` ` `Console.WriteLine(rhombusarea(l, b));` `}` `}` `// This code is contributed` `// by shs` |

## PHP

`<?php` `// PHP Program to find the` `// biggest rhombus which can be` `// inscribed within the rectangle` `// Function to find the area` `// of the biggest rhombus` `function` `rhombusarea(` `$l` `, ` `$b` `)` `{` ` ` `// the length and breadth` ` ` `// cannot be negative` ` ` `if` `(` `$l` `< 0 || ` `$b` `< 0)` ` ` `return` `-1;` ` ` `// area of the rhombus` ` ` `return` `(` `$l` `* ` `$b` `) / 2;` `}` `// Driver code` `$l` `= 16; ` `$b` `= 6;` `echo` `rhombusarea(` `$l` `, ` `$b` `) . ` `"\n"` `;` `// This code is contributed` `// by Akanksha Rai(Abby_akku)` |

## Javascript

`<script>` `// javascript Program to find the` `// biggest rhombus which can be` `// inscribed within the rectangle` `// Function to find the area` `// of the biggest rhombus` `function` `rhombusarea(l,b)` `{` ` ` `// the length and breadth` ` ` `// cannot be negative` ` ` `if` `(l < 0 || b < 0)` ` ` `return` `-1;` ` ` `// area of the rhombus` ` ` `return` `(l * b) / 2;` `}` `// Driver code` `var` `l = 16, b = 6;` `document.write(rhombusarea(l, b));` `// This code contributed by Princi Singh` `</script>` |

**Output:**

48

Attention reader! Don’t stop learning now. Participate in the **Scholorship Test for First-Step-to-DSA Course for Class 9 to 12 students**.