# Area of a Regular Pentagram

Given a Pentagram and it’s inner side length(d). The task is find out area of Pentagram. The Pentagram is a five-pointed star that is formed by drawing a continuous line in five straight segments. Examples:

Input: d = 5
Output: Area = 139.187
Area of regular pentagram = 139.187
Input: d = 7
Output: Area = 272.807

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Idea is to use Golden Ratio between a/b, b/c, and c/d which equals approximately 1.618
Inner side length d is given so
c = 1.618 * d
b = 1.618 * c
a = 1.618 * b

AB, BC and CD are equals(both side of regular pentagram)
So AB = BC = CD = c and BD is given by d.

Area of pentgram = Area of Pentagon BDFHJ + 5 * (Area of triangle BCD)
Area of Pentagon BDFHJ = (d^2 * 5)/ (4* tan 36)
Area of triangle BCD = [s(s-d)(s-c)(s-c)]^(1/2) {Heron’s Formula}
where
s = (d + c + c)/2

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `#define PI 3.14159 ` `using` `namespace` `std; ` ` `  `// Function to return the area of triangle BCD ` `double` `areaOfTriangle(``float` `d) ` `{ ` `    ``// Using Golden ratio ` `    ``float` `c = 1.618 * d; ` `    ``float` `s = (d + c + c) / 2; ` ` `  `    ``// Calculate area of triangle BCD ` `    ``double` `area = ``sqrt``(s * (s - c) * ` `                          ``(s - c) * (s - d)); ` ` `  `    ``// Return area of all 5 trianlge are same ` `    ``return` `5 * area; ` `} ` ` `  `// Function to return the area of regular pentagon ` `double` `areaOfRegPentagon(``float` `d) ` `{ ` `    ``// Calculate the area of regular ` `    ``// pentagon using above formula ` `    ``double` `cal = 4 * ``tan``(PI / 5); ` `    ``double` `area = (5 * d * d) / cal; ` ` `  `    ``// Return area of regular pentagon ` `    ``return` `area; ` `} ` ` `  `// Function to return the area of pentagram ` `double` `areaOfPentagram(``float` `d) ` `{ ` `    ``// Area of a pentagram is equal to the  ` `    ``// area of regular  pentagon and five times  ` `    ``// the area of Triangle ` `    ``return` `areaOfRegPentagon(d) +  ` `                             ``areaOfTriangle(d); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``float` `d = 5; ` `    ``cout << areaOfPentagram(d) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implemenation of above approach ` `public` `class` `GFG  ` `{ ` ` `  `    ``static` `double` `PI = ``3.14159``; ` ` `  `    ``// Function to return the area of triangle BCD ` `    ``static` `double` `areaOfTriangle(``float` `d)  ` `    ``{ ` `        ``// Using Golden ratio ` `        ``float` `c = (``float``) (``1.618` `* d); ` `        ``float` `s = (d + c + c) / ``2``; ` ` `  `        ``// Calculate area of triangle BCD ` `        ``double` `area = Math.sqrt(s * (s - c) ` `                ``* (s - c) * (s - d)); ` ` `  `        ``// Return area of all 5 trianlge are same ` `        ``return` `5` `* area; ` `    ``} ` ` `  `    ``// Function to return the area of regular pentagon ` `    ``static` `double` `areaOfRegPentagon(``float` `d) ` `    ``{ ` `        ``// Calculate the area of regular ` `        ``// pentagon using above formula ` `        ``double` `cal = ``4` `* Math.tan(PI / ``5``); ` `        ``double` `area = (``5` `* d * d) / cal; ` ` `  `        ``// Return area of regular pentagon ` `        ``return` `area; ` `    ``} ` ` `  `    ``// Function to return the area of pentagram ` `    ``static` `double` `areaOfPentagram(``float` `d)  ` `    ``{ ` `        ``// Area of a pentagram is equal to the  ` `        ``// area of regular pentagon and five times  ` `        ``// the area of Triangle ` `        ``return` `areaOfRegPentagon(d) ` `                ``+ areaOfTriangle(d); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``float` `d = ``5``; ` `        ``System.out.println(areaOfPentagram(d)); ` `    ``} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

## Python

 `# Python3 implementation of the approach ` ` `  `import` `math ` ` `  `PI ``=` `3.14159` ` `  `# Function to return the area of triangle BCD ` `def` `areaOfTriangle(d) : ` ` `  `    ``# Using Golden ratio ` `    ``c ``=` `1.618` `*` `d ` `    ``s ``=` `(d ``+` `c ``+` `c) ``/` `2` ` `  `    ``# Calculate area of triangle BCD ` `    ``area ``=` `math.sqrt(s ``*` `(s ``-` `c) ``*` `                        ``(s ``-` `c) ``*` `(s ``-` `d)) ` ` `  `    ``# Return area of all 5 triangles are the same ` `    ``return` `5` `*` `area ` ` `  ` `  `# Function to return the area of regular pentagon ` `def` `areaOfRegPentagon(d) : ` `     `  `    ``global` `PI ` `    ``# Calculate the area of regular ` `    ``# pentagon using above formula ` `    ``cal ``=` `4` `*` `math.tan(PI ``/` `5``) ` `    ``area ``=` `(``5` `*` `d ``*` `d) ``/` `cal ` `     `  `    ``# Return area of regular pentagon ` `    ``return` `area ` ` `  ` `  `# Function to return the area of pentagram ` `def` `areaOfPentagram(d) : ` ` `  `    ``# Area of a pentagram is equal to the  ` `    ``# area of regular pentagon and five times  ` `    ``# the area of Triangle ` `    ``return` `areaOfRegPentagon(d) ``+` `areaOfTriangle(d) ` ` `  ` `  `# Driver code ` ` `  `d ``=` `5` `print``(areaOfPentagram(d))  ` ` `  `     `  `# This code is contributed by ihritik `

## C#

 `// C# implementation of the above approach ` `using` `System; ` ` `  `class` `GFG  ` `{ ` ` `  `    ``static` `double` `PI = 3.14159; ` ` `  `    ``// Function to return the area of triangle BCD ` `    ``static` `double` `areaOfTriangle(``float` `d)  ` `    ``{ ` `        ``// Using Golden ratio ` `        ``float` `c = (``float``) (1.618 * d); ` `        ``float` `s = (d + c + c) / 2; ` ` `  `        ``// Calculate area of triangle BCD ` `        ``double` `area = Math.Sqrt(s * (s - c) ` `                ``* (s - c) * (s - d)); ` ` `  `        ``// Return area of all 5 trianlge are same ` `        ``return` `5 * area; ` `    ``} ` ` `  `    ``// Function to return the area of regular pentagon ` `    ``static` `double` `areaOfRegPentagon(``float` `d) ` `    ``{ ` `        ``// Calculate the area of regular ` `        ``// pentagon using above formula ` `        ``double` `cal = 4 * Math.Tan(PI / 5); ` `        ``double` `area = (5 * d * d) / cal; ` ` `  `        ``// Return area of regular pentagon ` `        ``return` `area; ` `    ``} ` ` `  `    ``// Function to return the area of pentagram ` `    ``static` `double` `areaOfPentagram(``float` `d)  ` `    ``{ ` `        ``// Area of a pentagram is equal to the  ` `        ``// area of regular pentagon and five times  ` `        ``// the area of Triangle ` `        ``return` `areaOfRegPentagon(d) ` `                ``+ areaOfTriangle(d); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``float` `d = 5; ` `        ``Console.WriteLine(areaOfPentagram(d)); ` `    ``} ` `} ` ` `  `// This code has been contributed by ihritik `

Output:

```139.187
```

Time Complexity : O(1)

My Personal Notes arrow_drop_up Just another competitive programmer and hard worker

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.