Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Area of a Regular Pentagram

  • Difficulty Level : Medium
  • Last Updated : 04 Aug, 2021

Given a Pentagram and it’s inner side length(d). The task is find out area of Pentagram. The Pentagram is a five-pointed star that is formed by drawing a continuous line in five straight segments.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Examples: 



Input: d = 5 
Output: Area = 139.187 
Area of regular pentagram = 139.187 

Input: d = 7 
Output: Area = 272.807 
 

Idea is to use Golden Ratio between a/b, b/c, and c/d which equals approximately 1.618 
Inner side length d is given so 
c = 1.618 * d 
b = 1.618 * c 
a = 1.618 * b
AB, BC and CD are equals(both side of regular pentagram) 
So AB = BC = CD = c and BD is given by d.

Area of pentagram = Area of Pentagon BDFHJ + 5 * (Area of triangle BCD) 
Area of Pentagon BDFHJ = (d^2 * 5)/ (4* tan 36) 
Area of triangle BCD = [s(s-d)(s-c)(s-c)]^(1/2) {Heron’s Formula} 
where 
s = (d + c + c)/2 
 

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define PI 3.14159
using namespace std;
 
// Function to return the area of triangle BCD
double areaOfTriangle(float d)
{
    // Using Golden ratio
    float c = 1.618 * d;
    float s = (d + c + c) / 2;
 
    // Calculate area of triangle BCD
    double area = sqrt(s * (s - c) *
                          (s - c) * (s - d));
 
    // Return area of all 5 triangle are same
    return 5 * area;
}
 
// Function to return the area of regular pentagon
double areaOfRegPentagon(float d)
{
    // Calculate the area of regular
    // pentagon using above formula
    double cal = 4 * tan(PI / 5);
    double area = (5 * d * d) / cal;
 
    // Return area of regular pentagon
    return area;
}
 
// Function to return the area of pentagram
double areaOfPentagram(float d)
{
    // Area of a pentagram is equal to the
    // area of regular  pentagon and five times
    // the area of Triangle
    return areaOfRegPentagon(d) +
                             areaOfTriangle(d);
}
 
// Driver code
int main()
{
    float d = 5;
    cout << areaOfPentagram(d) << endl;
 
    return 0;
}

Java




// Java implementation of above approach
public class GFG
{
 
    static double PI = 3.14159;
 
    // Function to return the area of triangle BCD
    static double areaOfTriangle(float d)
    {
        // Using Golden ratio
        float c = (float) (1.618 * d);
        float s = (d + c + c) / 2;
 
        // Calculate area of triangle BCD
        double area = Math.sqrt(s * (s - c)
                * (s - c) * (s - d));
 
        // Return area of all 5 triangle are same
        return 5 * area;
    }
 
    // Function to return the area of regular pentagon
    static double areaOfRegPentagon(float d)
    {
        // Calculate the area of regular
        // pentagon using above formula
        double cal = 4 * Math.tan(PI / 5);
        double area = (5 * d * d) / cal;
 
        // Return area of regular pentagon
        return area;
    }
 
    // Function to return the area of pentagram
    static double areaOfPentagram(float d)
    {
        // Area of a pentagram is equal to the
        // area of regular pentagon and five times
        // the area of Triangle
        return areaOfRegPentagon(d)
                + areaOfTriangle(d);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        float d = 5;
        System.out.println(areaOfPentagram(d));
    }
}
 
// This code has been contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
 
import math
 
PI = 3.14159
 
# Function to return the area of triangle BCD
def areaOfTriangle(d) :
 
    # Using Golden ratio
    c = 1.618 * d
    s = (d + c + c) / 2
 
    # Calculate area of triangle BCD
    area = math.sqrt(s * (s - c) *
                        (s - c) * (s - d))
 
    # Return area of all 5 triangles are the same
    return 5 * area
 
 
# Function to return the area of regular pentagon
def areaOfRegPentagon(d) :
     
    global PI
    # Calculate the area of regular
    # pentagon using above formula
    cal = 4 * math.tan(PI / 5)
    area = (5 * d * d) / cal
     
    # Return area of regular pentagon
    return area
 
 
# Function to return the area of pentagram
def areaOfPentagram(d) :
 
    # Area of a pentagram is equal to the
    # area of regular pentagon and five times
    # the area of Triangle
    return areaOfRegPentagon(d) + areaOfTriangle(d)
 
 
# Driver code
 
d = 5
print(areaOfPentagram(d))
 
     
# This code is contributed by ihritik

C#




// C# implementation of the above approach
using System;
 
class GFG
{
 
    static double PI = 3.14159;
 
    // Function to return the area of triangle BCD
    static double areaOfTriangle(float d)
    {
        // Using Golden ratio
        float c = (float) (1.618 * d);
        float s = (d + c + c) / 2;
 
        // Calculate area of triangle BCD
        double area = Math.Sqrt(s * (s - c)
                * (s - c) * (s - d));
 
        // Return area of all 5 triangle are same
        return 5 * area;
    }
 
    // Function to return the area of regular pentagon
    static double areaOfRegPentagon(float d)
    {
        // Calculate the area of regular
        // pentagon using above formula
        double cal = 4 * Math.Tan(PI / 5);
        double area = (5 * d * d) / cal;
 
        // Return area of regular pentagon
        return area;
    }
 
    // Function to return the area of pentagram
    static double areaOfPentagram(float d)
    {
        // Area of a pentagram is equal to the
        // area of regular pentagon and five times
        // the area of Triangle
        return areaOfRegPentagon(d)
                + areaOfTriangle(d);
    }
 
    // Driver code
    public static void Main()
    {
        float d = 5;
        Console.WriteLine(areaOfPentagram(d));
    }
}
 
// This code has been contributed by ihritik

Javascript




<script>
// Javascript implementation of the approach
var PI = 3.14159
 
// Function to return the area of triangle BCD
function areaOfTriangle(d)
{
    // Using Golden ratio
    var c = 1.618 * d;
    var s = (d + c + c) / 2;
 
    // Calculate area of triangle BCD
    var area = Math.sqrt(s * (s - c) *
                          (s - c) * (s - d));
 
    // Return area of all 5 triangle are same
    return 5 * area;
}
 
// Function to return the area of regular pentagon
function areaOfRegPentagon( d)
{
    // Calculate the area of regular
    // pentagon using above formula
    var cal = 4 * Math.tan(PI / 5);
    var area = (5 * d * d) / cal;
 
    // Return area of regular pentagon
    return area;
}
 
// Function to return the area of pentagram
function areaOfPentagram(d)
{
    // Area of a pentagram is equal to the
    // area of regular  pentagon and five times
    // the area of Triangle
    return areaOfRegPentagon(d) +
                             areaOfTriangle(d);
}
 
// Driver code
var d = 5;
document.write(areaOfPentagram(d).toFixed(3));
 
// This code is contributed by ShubhamSingh10
</script>
Output: 
139.187

 

Time Complexity : O(1)
 

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :