Accessing Data Along Multiple Dimensions Arrays in Python Numpy

NumPy (Numerical Python) is a Python library that comprises of multidimensional arrays and numerous functions to perform various mathematical and logical operations on them. NumPy also consists of various functions to perform linear algebra operations and generate random numbers. NumPy is often used along with packages like SciPy and Matplotlib for technical computing.

An n-dimensional (multidimensional) array has a fixed size and contains items of the same type. the contents of the multidimensional array can be accessed and modified by using indexing and slicing the array as desired. For accessing elements of an array we need to first import the library:

import numpy as np

We can use Integer Indexing to access elements of data. We can also perform Slicing to access sub-sequences of data.

Example 1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# 1-dimensional array
array1D = np.array([1, 2, 3, 4, 5])
  
print(array1D)
  
# to access elements using positive
# index
print("\nusing positive index :" +str(array1D[0]))
print("using positive index :" +str(array1D[4]))
  
# negative indexing works in opposite
# direction
print("\nusing negative index :" +str(array1D[-5]))
print("using negative index :" +str(array1D[-1]))

chevron_right


Output :



[1 2 3 4 5]

using positive index :1
using positive index :5

using negative index :5
using negative index :1

Example 2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# 2-dimensional array 
array2D = np.array([[9395],
                    [84, 100],
                    [9987]])
  
print(array2D)
print("shape :" +str(array2D.shape))
  
print("\npositive indexing :" +str(array2D[1, 0]))
print("negative indexing :" +str(array2D[-2, 0]))
  
print("\nslicing using positive indices :" +str(array2D[0:3, 1]))
print("slicing using positive indices :" +str(array2D[:, 1]))
print("slicing using negative indices :" +str(array2D[:, -1]))

chevron_right


Output :

[[ 93  95]
 [ 84 100]
 [ 99  87]]
shape :(3, 2)

positive indexing :84
negative indexing :84

slicing using positive indices :[ 95 100  87]
slicing using positive indices :[ 95 100  87]
slicing using negative indices :[ 95 100  87]

Example 3:

filter_none

edit
close

play_arrow

link
brightness_4
code

# 3-dimensional array 
array3D = np.array([[[ 012],
                     [ 345],
                     [ 678]],
   
                    [[ 9, 10, 11],
                     [12, 13, 14],
                     [15, 16, 17]],
  
                    [[18, 19, 20],
                     [21, 22, 23],
                     [24, 25, 26]]])
  
print(array3D)
print("shape :" +str(array3D.shape))
  
print("\nacessing element :" +str(array3D[0, 1, 0]))
print("acessing elements of a row and a column of an array:"
      +str(array3D[:, 1, 0]))
print("accessing sub part of an array :" +str(array3D[1]))

chevron_right


Output :

[[[ 0  1  2]
  [ 3  4  5]
  [ 6  7  8]]

 [[ 9 10 11]
  [12 13 14]
  [15 16 17]]

 [[18 19 20]
  [21 22 23]
  [24 25 26]]]
shape :(3, 3, 3)
acessing element :3
acessing elements of a row and a column of an array:[ 3 12 21]
accessing sub part of an array :[[ 9 10 11]
 [12 13 14]
 [15 16 17]]



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.