# Ways of filling matrix such that product of all rows and all columns are equal to unity

We are given three values , and where is number of rows in matrix, is number of columns in the matrix and is the number that can have only two values -1 and 1. Our aim is to find the number of ways of filling the matrix of such that the product of all the elements in each row and each column is equal to . Since the number of ways can be large we will output Examples:

Input : n = 2, m = 4, k = -1
Output : 8
Following configurations satisfy the conditions:-  Input  : n = 2, m = 1, k = -1
Output : The number of filling the matrix
are 0


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

From the above conditions, it is clear that the only elements that can be entered in the matrix are 1 and -1. Now we can easily deduce some of the corner cases

1. If k = -1, then the sum of number of rows and columns cannot be odd because -1 will be present odd
number of times in each row and column therefore if the sum is odd then answer is .
2. If n = 1 or m = 1 then there is only one way of filling the matrix therefore answer is 1.
3. If none of the above cases are applicable then we fill the first rows and the first columns with 1 and -1. Then the remaining numbers can be uniquely identified since the product of each row an each column is already known therefore the answer is .

## C++

 // CPP program to find number of ways to fill  // a matrix under given constraints  #include  using namespace std;     #define mod 100000007     /* Returns a raised power t under modulo mod */ long long modPower(long long a, long long t)  {      long long now = a, ret = 1;         // Counting number of ways of filling the matrix      while (t) {          if (t & 1)              ret = now * (ret % mod);          now = now * (now % mod);          t >>= 1;      }      return ret;  }     // Function calculating the answer  long countWays(int n, int m, int k)  {      // if sum of numbers of rows and columns is odd      // i.e (n + m) % 2 == 1 and k = -1 then there      // are 0 ways of filiing the matrix.      if (k == -1 && (n + m) % 2 == 1)          return 0;         // If there is one row or one column then there      // is only one way of filling the matrix      if (n == 1 || m == 1)          return 1;         // If the above cases are not followed then we      // find ways to fill the n - 1 rows and m - 1      // columns which is 2 ^ ((m-1)*(n-1)).      return (modPower(modPower((long long)2, n - 1),                                      m - 1) % mod);  }     // Driver function for the program  int main()  {      int n = 2, m = 7, k = 1;      cout << countWays(n, m, k);      return 0;  }

Output:

64


## Java

 // Java program to find number of ways to fill  // a matrix under given constraints  import java.io.*;     class Example {         final static long mod = 100000007;         /* Returns a raised power t under modulo mod */     static long modPower(long a, long t, long mod)      {          long now = a, ret = 1;             // Counting number of ways of filling the          // matrix          while (t > 0) {              if (t % 2 == 1)                  ret = now * (ret % mod);              now = now * (now % mod);              t >>= 1;          }          return ret;      }         // Function calculating the answer      static long countWays(int n, int m, int k)      {          // if sum of numbers of rows and columns is          // odd i.e (n + m) % 2 == 1 and k = -1,          // then there are 0 ways of filiing the matrix.          if (n == 1 || m == 1)              return 1;             // If there is one row or one column then          // there is only one way of filling the matrix          else if ((n + m) % 2 == 1 && k == -1)              return 0;            // If the above cases are not followed then we         // find ways to fill the n - 1 rows and m - 1         // columns which is 2 ^ ((m-1)*(n-1)).          return (modPower(modPower((long)2, n - 1, mod),                                      m - 1, mod) % mod);      }         // Driver function for the program      public static void main(String args[]) throws IOException      {          int n = 2, m = 7, k = 1;          System.out.println(countWays(n, m, k));      }  }

## Python 3

 # Python program to find number of ways to   # fill a matrix under given constraints     # Returns a raised power t under modulo mod   def modPower(a, t):             now = a;      ret = 1;      mod = 100000007;         # Counting number of ways of filling      # the matrix      while (t):           if (t & 1):              ret = now * (ret % mod);          now = now * (now % mod);          t >>= 1;             return ret;     # Function calculating the answer  def countWays(n, m, k):         mod= 100000007;             # if sum of numbers of rows and columns       # is odd i.e (n + m) % 2 == 1 and k = -1       # then there are 0 ways of filiing the matrix.      if (k == -1 and ((n + m) % 2 == 1)):          return 0;         # If there is one row or one column then       # there is only one way of filling the matrix      if (n == 1 or m == 1):          return 1;         # If the above cases are not followed then we      # find ways to fill the n - 1 rows and m - 1      # columns which is 2 ^ ((m-1)*(n-1)).      return (modPower(modPower(2, n - 1),                                 m - 1) % mod);     # Driver Code  n = 2;  m = 7;  k = 1;  print(countWays(n, m, k));     # This code is contributed   # by Shivi_Aggarwal

## C#

 // C# program to find number of ways to fill  // a matrix under given constraints  using System;     class Example  {         static long mod = 100000007;         // Returns a raised power t       // under modulo mod       static long modPower(long a, long t,                           long mod)      {          long now = a, ret = 1;             // Counting number of ways           // of filling the          // matrix          while (t > 0)          {              if (t % 2 == 1)                  ret = now * (ret % mod);              now = now * (now % mod);              t >>= 1;          }          return ret;      }         // Function calculating the answer      static long countWays(int n, int m,                            int k)      {          // if sum of numbers of rows           // and columns is odd i.e          // (n + m) % 2 == 1 and           // k = -1, then there are 0           // ways of filiing the matrix.          if (n == 1 || m == 1)              return 1;             // If there is one row or one          // column then there is only           // one way of filling the matrix          else if ((n + m) % 2 == 1 && k == -1)              return 0;             // If the above cases are not           // followed then we find ways          // to fill the n - 1 rows and          // m - 1 columns which is          // 2 ^ ((m-1)*(n-1)).          return (modPower(modPower((long)2, n - 1,                            mod), m - 1, mod) % mod);                                             }         // Driver Code      public static void Main()       {          int n = 2, m = 7, k = 1;          Console.WriteLine(countWays(n, m, k));      }  }     // This code is contributed by vt_m.

## PHP

 >= 1;      }      return $ret;  }    // Function calculating the answer  function countWays($n, $m, $k)  {      global $mod;     // if sum of numbers of rows   // and columns is odd i.e   // (n + m) % 2 == 1 and k = -1   // then there are 0 ways of   // filiing the matrix.   if ($k == -1 and ($n + $m) % 2 == 1)          return 0;         // If there is one row or      // one column then there      // is only one way of       // filling the matrix      if ($n == 1 or $m == 1)          return 1;         // If the above cases are      // not followed then we      // find ways to fill the       // n - 1 rows and m - 1      // columns which is       // 2 ^ ((m-1)*(n-1)).      return (modPower(modPower(2, $n - 1),   $m - 1) % $mod);  }     // Driver Code   $n = 2;       $m = 7;   $k = 1;      echo countWays($n, $m, \$k);         // This code is contributed by anuj_67.  ?>

Output:

64


The time complexity of above solution is .

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : vt_m, Shivi_Aggarwal

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.