Two Dimensional Binary Indexed Tree or Fenwick Tree
Prerequisite – Fenwick Tree
We know that to answer range sum queries on a 1-D array efficiently, binary indexed tree (or Fenwick Tree) is the best choice (even better than segment tree due to less memory requirements and a little faster than segment tree).
Can we answer sub-matrix sum queries efficiently using Binary Indexed Tree ?
The answer is yes. This is possible using a 2D BIT which is nothing but an array of 1D BIT.
Algorithm:
We consider the below example. Suppose we have to find the sum of all numbers inside the highlighted area-
We assume the origin of the matrix at the bottom – O.Then a 2D BIT exploits the fact that-
Sum under the marked area = Sum(OB) - Sum(OD) - Sum(OA) + Sum(OC)
In our program, we use the getSum(x, y) function which finds the sum of the matrix from (0, 0) to (x, y).
Hence the below formula :
Sum under the marked area = Sum(OB) - Sum(OD) - Sum(OA) + Sum(OC) The above formula gets reduced to, Query(x1,y1,x2,y2) = getSum(x2, y2) - getSum(x2, y1-1) - getSum(x1-1, y2) + getSum(x1-1, y1-1)
where,
x1, y1 = x and y coordinates of C
x2, y2 = x and y coordinates of B
The updateBIT(x, y, val) function updates all the elements under the region – (x, y) to (N, M) where,
N = maximum X co-ordinate of the whole matrix.
M = maximum Y co-ordinate of the whole matrix.
The rest procedure is quite similar to that of 1D Binary Indexed Tree. Below is the C++ implementation of 2D indexed tree
C++
/* C++ program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ #include<bits/stdc++.h> using namespace std; #define N 4 // N-->max_x and max_y // A structure to hold the queries struct Query { int x1, y1; // x and y co-ordinates of bottom left int x2, y2; // x and y co-ordinates of top right }; // A function to update the 2D BIT void updateBIT( int BIT[][N+1], int x, int y, int val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for ( int yy=y; yy <= N; yy += (yy & -yy)) BIT[x][yy] += val; } return ; } // A function to get sum from (0, 0) to (x, y) int getSum( int BIT[][N+1], int x, int y) { int sum = 0; for (; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for ( int yy=y; yy > 0; yy -= yy&-yy) { sum += BIT[x][yy]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix void constructAux( int mat[][N], int aux[][N+1]) { // Initialise Auxiliary array to 0 for ( int i=0; i<=N; i++) for ( int j=0; j<=N; j++) aux[i][j] = 0; // Construct the Auxiliary Matrix for ( int j=1; j<=N; j++) for ( int i=1; i<=N; i++) aux[i][j] = mat[N-j][i-1]; return ; } // A function to construct a 2D BIT void construct2DBIT( int mat[][N], int BIT[][N+1]) { // Create an auxiliary matrix int aux[N+1][N+1]; constructAux(mat, aux); // Initialise the BIT to 0 for ( int i=1; i<=N; i++) for ( int j=1; j<=N; j++) BIT[i][j] = 0; for ( int j=1; j<=N; j++) { for ( int i=1; i<=N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array int v1 = getSum(BIT, i, j); int v2 = getSum(BIT, i, j-1); int v3 = getSum(BIT, i-1, j-1); int v4 = getSum(BIT, i-1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i][j]-(v1-v2-v4+v3)); } } return ; } // A function to answer the queries void answerQueries(Query q[], int m, int BIT[][N+1]) { for ( int i=0; i<m; i++) { int x1 = q[i].x1 + 1; int y1 = q[i].y1 + 1; int x2 = q[i].x2 + 1; int y2 = q[i].y2 + 1; int ans = getSum(BIT, x2, y2)-getSum(BIT, x2, y1-1)- getSum(BIT, x1-1, y2)+getSum(BIT, x1-1, y1-1); printf ( "Query(%d, %d, %d, %d) = %d\n" , q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); } return ; } // Driver program int main() { int mat[N][N] = {{1, 2, 3, 4}, {5, 3, 8, 1}, {4, 6, 7, 5}, {2, 4, 8, 9}}; // Create a 2D Binary Indexed Tree int BIT[N+1][N+1]; construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} ---> 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ----> x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ Query q[] = {{1, 1, 3, 2}, {2, 3, 3, 3}, {1, 1, 1, 1}}; int m = sizeof (q)/ sizeof (q[0]); answerQueries(q, m, BIT); return (0); } |
Java
/* Java program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ class GFG { static final int N = 4 ; // N-.max_x and max_y // A structure to hold the queries static class Query { int x1, y1; // x and y co-ordinates of bottom left int x2, y2; // x and y co-ordinates of top right public Query( int x1, int y1, int x2, int y2) { this .x1 = x1; this .y1 = y1; this .x2 = x2; this .y2 = y2; } }; // A function to update the 2D BIT static void updateBIT( int BIT[][], int x, int y, int val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (; y <= N; y += (y & -y)) BIT[x][y] += val; } return ; } // A function to get sum from (0, 0) to (x, y) static int getSum( int BIT[][], int x, int y) { int sum = 0 ; for (; x > 0 ; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for (; y > 0 ; y -= y&-y) { sum += BIT[x][y]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix static void constructAux( int mat[][], int aux[][]) { // Initialise Auxiliary array to 0 for ( int i = 0 ; i <= N; i++) for ( int j = 0 ; j <= N; j++) aux[i][j] = 0 ; // Construct the Auxiliary Matrix for ( int j = 1 ; j <= N; j++) for ( int i = 1 ; i <= N; i++) aux[i][j] = mat[N - j][i - 1 ]; return ; } // A function to construct a 2D BIT static void construct2DBIT( int mat[][], int BIT[][]) { // Create an auxiliary matrix int [][]aux = new int [N + 1 ][N + 1 ]; constructAux(mat, aux); // Initialise the BIT to 0 for ( int i = 1 ; i <= N; i++) for ( int j = 1 ; j <= N; j++) BIT[i][j] = 0 ; for ( int j = 1 ; j <= N; j++) { for ( int i = 1 ; i <= N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array int v1 = getSum(BIT, i, j); int v2 = getSum(BIT, i, j - 1 ); int v3 = getSum(BIT, i - 1 , j - 1 ); int v4 = getSum(BIT, i - 1 , j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i][j] - (v1 - v2 - v4 + v3)); } } return ; } // A function to answer the queries static void answerQueries(Query q[], int m, int BIT[][]) { for ( int i = 0 ; i < m; i++) { int x1 = q[i].x1 + 1 ; int y1 = q[i].y1 + 1 ; int x2 = q[i].x2 + 1 ; int y2 = q[i].y2 + 1 ; int ans = getSum(BIT, x2, y2) - getSum(BIT, x2, y1 - 1 ) - getSum(BIT, x1 - 1 , y2) + getSum(BIT, x1 - 1 , y1 - 1 ); System.out.printf( "Query(%d, %d, %d, %d) = %d\n" , q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); } return ; } // Driver Code public static void main(String[] args) { int mat[][] = { { 1 , 2 , 3 , 4 }, { 5 , 3 , 8 , 1 }, { 4 , 6 , 7 , 5 }, { 2 , 4 , 8 , 9 } }; // Create a 2D Binary Indexed Tree int [][]BIT = new int [N + 1 ][N + 1 ]; construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ Query q[] = { new Query( 1 , 1 , 3 , 2 ), new Query( 2 , 3 , 3 , 3 ), new Query( 1 , 1 , 1 , 1 )}; int m = q.length; answerQueries(q, m, BIT); } } // This code is contributed by 29AjayKumar |
Python3
'''Python3 program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. ''' N = 4 # N-.max_x and max_y # A structure to hold the queries class Query: def __init__( self , x1,y1,x2,y2): self .x1 = x1; self .y1 = y1; self .x2 = x2; self .y2 = y2; # A function to update the 2D BIT def updateBIT(BIT,x,y,val): while x < = N: # This loop update all the 1D BIT inside the # array of 1D BIT = BIT[x] while y < = N: BIT[x][y] + = val; y + = (y & - y) x + = (x & - x) return ; # A function to get sum from (0, 0) to (x, y) def getSum(BIT,x,y): sum = 0 ; while x > 0 : # This loop sum through all the 1D BIT # inside the array of 1D BIT = BIT[x] while y > 0 : sum + = BIT[x][y]; y - = y& - y x - = x& - x return sum ; # A function to create an auxiliary matrix # from the given input matrix def constructAux(mat,aux): # Initialise Auxiliary array to 0 for i in range (N + 1 ): for j in range (N + 1 ): aux[i][j] = 0 # Construct the Auxiliary Matrix for j in range ( 1 , N + 1 ): for i in range ( 1 , N + 1 ): aux[i][j] = mat[N - j][i - 1 ]; return # A function to construct a 2D BIT def construct2DBIT(mat,BIT): # Create an auxiliary matrix aux = [ None for i in range (N + 1 )] for i in range (N + 1 ) : aux[i] = [ None for i in range (N + 1 )] constructAux(mat, aux) # Initialise the BIT to 0 for i in range ( 1 , N + 1 ): for j in range ( 1 , N + 1 ): BIT[i][j] = 0 ; for j in range ( 1 , N + 1 ): for i in range ( 1 , N + 1 ): # Creating a 2D-BIT using update function # everytime we/ encounter a value in the # input 2D-array v1 = getSum(BIT, i, j); v2 = getSum(BIT, i, j - 1 ); v3 = getSum(BIT, i - 1 , j - 1 ); v4 = getSum(BIT, i - 1 , j); # Assigning a value to a particular element # of 2D BIT updateBIT(BIT, i, j, aux[i][j] - (v1 - v2 - v4 + v3)); return ; # A function to answer the queries def answerQueries(q,m,BIT): for i in range (m): x1 = q[i].x1 + 1 ; y1 = q[i].y1 + 1 ; x2 = q[i].x2 + 1 ; y2 = q[i].y2 + 1 ; ans = getSum(BIT, x2, y2) - \ getSum(BIT, x2, y1 - 1 ) - \ getSum(BIT, x1 - 1 , y2) + \ getSum(BIT, x1 - 1 , y1 - 1 ); print ( "Query (" , q[i].x1, ", " , q[i].y1, ", " , q[i].x2, ", " , q[i].y2, ") = " ,ans, sep = "") return ; # Driver Code mat = [[ 1 , 2 , 3 , 4 ], [ 5 , 3 , 8 , 1 ], [ 4 , 6 , 7 , 5 ], [ 2 , 4 , 8 , 9 ]]; # Create a 2D Binary Indexed Tree BIT = [ None for i in range (N + 1 )] for i in range (N + 1 ): BIT[i] = [ None for i in range (N + 1 )] for j in range (N + 1 ): BIT[i][j] = 0 construct2DBIT(mat, BIT); ''' Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 ''' q = [Query( 1 , 1 , 3 , 2 ), Query( 2 , 3 , 3 , 3 ), Query( 1 , 1 , 1 , 1 )]; m = len (q) answerQueries(q, m, BIT); # This code is contributed by phasing17 |
C#
/* C# program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by.Adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and.Adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ using System; class GFG { static readonly int N = 4; // N-.max_x and max_y // A structure to hold the queries public class Query { public int x1, y1; // x and y co-ordinates of bottom left public int x2, y2; // x and y co-ordinates of top right public Query( int x1, int y1, int x2, int y2) { this .x1 = x1; this .y1 = y1; this .x2 = x2; this .y2 = y2; } }; // A function to update the 2D BIT static void updateBIT( int [,]BIT, int x, int y, int val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (; y <= N; y += (y & -y)) BIT[x,y] += val; } return ; } // A function to get sum from (0, 0) to (x, y) static int getSum( int [,]BIT, int x, int y) { int sum = 0; for (; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for (; y > 0; y -= y&-y) { sum += BIT[x, y]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix static void constructAux( int [,]mat, int [,]aux) { // Initialise Auxiliary array to 0 for ( int i = 0; i <= N; i++) for ( int j = 0; j <= N; j++) aux[i, j] = 0; // Construct the Auxiliary Matrix for ( int j = 1; j <= N; j++) for ( int i = 1; i <= N; i++) aux[i, j] = mat[N - j, i - 1]; return ; } // A function to construct a 2D BIT static void construct2DBIT( int [,]mat, int [,]BIT) { // Create an auxiliary matrix int [,]aux = new int [N + 1, N + 1]; constructAux(mat, aux); // Initialise the BIT to 0 for ( int i = 1; i <= N; i++) for ( int j = 1; j <= N; j++) BIT[i, j] = 0; for ( int j = 1; j <= N; j++) { for ( int i = 1; i <= N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array int v1 = getSum(BIT, i, j); int v2 = getSum(BIT, i, j - 1); int v3 = getSum(BIT, i - 1, j - 1); int v4 = getSum(BIT, i - 1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i,j] - (v1 - v2 - v4 + v3)); } } return ; } // A function to answer the queries static void answerQueries(Query []q, int m, int [,]BIT) { for ( int i = 0; i < m; i++) { int x1 = q[i].x1 + 1; int y1 = q[i].y1 + 1; int x2 = q[i].x2 + 1; int y2 = q[i].y2 + 1; int ans = getSum(BIT, x2, y2) - getSum(BIT, x2, y1 - 1) - getSum(BIT, x1 - 1, y2) + getSum(BIT, x1 - 1, y1 - 1); Console.Write( "Query({0}, {1}, {2}, {3}) = {4}\n" , q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); } return ; } // Driver Code public static void Main(String[] args) { int [,]mat = { {1, 2, 3, 4}, {5, 3, 8, 1}, {4, 6, 7, 5}, {2, 4, 8, 9} }; // Create a 2D Binary Indexed Tree int [,]BIT = new int [N + 1,N + 1]; construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ Query []q = { new Query(1, 1, 3, 2), new Query(2, 3, 3, 3), new Query(1, 1, 1, 1)}; int m = q.Length; answerQueries(q, m, BIT); } } // This code is contributed by Rajput-Ji |
Javascript
<script> /* Javascript program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ let N = 4; // N-.max_x and max_y // A structure to hold the queries class Query { constructor(x1,y1,x2,y2) { this .x1 = x1; this .y1 = y1; this .x2 = x2; this .y2 = y2; } } // A function to update the 2D BIT function updateBIT(BIT,x,y,val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (; y <= N; y += (y & -y)) BIT[x][y] += val; } return ; } // A function to get sum from (0, 0) to (x, y) function getSum(BIT,x,y) { let sum = 0; for (; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for (; y > 0; y -= y&-y) { sum += BIT[x][y]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix function constructAux(mat,aux) { // Initialise Auxiliary array to 0 for (let i = 0; i <= N; i++) for (let j = 0; j <= N; j++) aux[i][j] = 0; // Construct the Auxiliary Matrix for (let j = 1; j <= N; j++) for (let i = 1; i <= N; i++) aux[i][j] = mat[N - j][i - 1]; return ; } // A function to construct a 2D BIT function construct2DBIT(mat,BIT) { // Create an auxiliary matrix let aux = new Array(N + 1); for (let i=0;i<(N+1);i++) { aux[i]= new Array(N+1); } constructAux(mat, aux); // Initialise the BIT to 0 for (let i = 1; i <= N; i++) for (let j = 1; j <= N; j++) BIT[i][j] = 0; for (let j = 1; j <= N; j++) { for (let i = 1; i <= N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array let v1 = getSum(BIT, i, j); let v2 = getSum(BIT, i, j - 1); let v3 = getSum(BIT, i - 1, j - 1); let v4 = getSum(BIT, i - 1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i][j] - (v1 - v2 - v4 + v3)); } } return ; } // A function to answer the queries function answerQueries(q,m,BIT) { for (let i = 0; i < m; i++) { let x1 = q[i].x1 + 1; let y1 = q[i].y1 + 1; let x2 = q[i].x2 + 1; let y2 = q[i].y2 + 1; let ans = getSum(BIT, x2, y2) - getSum(BIT, x2, y1 - 1) - getSum(BIT, x1 - 1, y2) + getSum(BIT, x1 - 1, y1 - 1); document.write( "Query (" +q[i].x1+ ", " +q[i].y1+ ", " +q[i].x2+ ", " +q[i].y2+ ") = " +ans+ "<br>" ); } return ; } // Driver Code let mat= [[1, 2, 3, 4], [5, 3, 8, 1], [4, 6, 7, 5], [2, 4, 8, 9]]; // Create a 2D Binary Indexed Tree let BIT = new Array(N + 1); for (let i=0;i<(N+1);i++) { BIT[i]= new Array(N+1); for (let j=0;j<(N+1);j++) { BIT[i][j]=0; } } construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ let q = [ new Query(1, 1, 3, 2), new Query(2, 3, 3, 3), new Query(1, 1, 1, 1)]; let m = q.length; answerQueries(q, m, BIT); // This code is contributed by rag2127 </script> |
Query(1, 1, 3, 2) = 30 Query(2, 3, 3, 3) = 7 Query(1, 1, 1, 1) = 6
Time Complexity:
- Both updateBIT(x, y, val) function and getSum(x, y) function takes O(log(N)*log(M)) time.
- Building the 2D BIT takes O(NM log(N)*log(M)).
- Since in each of the queries we are calling getSum(x, y) function so answering all the Q queries takes O(Q*log(N)*log(M)) time.
Hence the overall time complexity of the program is O((NM+Q)*log(N)*log(M)) where,
N = maximum X co-ordinate of the whole matrix.
M = maximum Y co-ordinate of the whole matrix.
Q = Number of queries.
Auxiliary Space: O(NM) to store the BIT and the auxiliary array
References: https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
This article is contributed by Rachit Belwariar . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...