Skip to content
Related Articles

Related Articles

Improve Article
Triple Order Traversal of a Binary Tree
  • Last Updated : 17 Aug, 2020

Given a Binary Tree, the task is to find it’s Triple Order Traversal

Triple Order Traversal is a tree traversal technique in which every node is traversed thrice in the following order: 

  • Visit the root node
  • Traverse the left subtree
  • Visit the root node
  • Traverse the right subtree
  • Visit the root node.

Examples:

Input:
            A
           / \
          B   C
         / \   \
        F   D   E
       
Output: A B F F F B D D D B A C C E E E C A

Input:
            A
           / \
          B   C
         / \   
        E   D   
       /
      F
Output: A B E F F F E E B D D D B A C C C A 

Approach: 
Follow the steps below to solve the problem: 

  • Start the traversal from the root.
  • If the current node does not exist, simply return from it.
  • Otherwise:
    • Print the value of the current node.
    • Recursively traverse the left subtree.
    • Again, print the current node.
    • Recursively traverse the right subtree.
    • Again, print the current node.
  • Repeat the above steps until all nodes in the tree are visited.

Below is the implementation of the above approach:
 



C++




// C++ Program to implement triple
// order traversal of a binary tree
#include <iostream>
using namespace std;
  
// Structure of a Node
struct node {
    char data;
    struct node *left, *right;
};
  
// Function to create new node
struct node* newNode(char ch)
{
    // Allocating a new node in the memory.
    struct node* n = (struct node*)
        malloc(sizeof(struct node));
    n->data = ch;
    n->left = NULL;
    n->right = NULL;
    return n;
}
  
// Function to print Triple Order traversal
void tripleOrderTraversal(struct node* root)
{
    if (root) {
  
        // Print the current node
        cout << root->data << " ";
  
        // Traverse left subtree
        tripleOrderTraversal(root->left);
  
        // Print the current node
        cout << root->data << " ";
  
        // Traverse right subtree
        tripleOrderTraversal(root->right);
  
        // Print the current node
        cout << root->data << " ";
    }
}
  
// Driver Code
int main()
{
    struct node* root = newNode('A');
    root->left = newNode('B');
    root->right = newNode('C');
    root->left->left = newNode('F');
    root->left->right = newNode('D');
    root->right->right = newNode('E');
  
    tripleOrderTraversal(root);
}

Java




// Java program to implement triple
// order traversal of a binary tree
import java.util.*;
  
class GFG{
  
// Structure of a Node
static class node
{
    char data;
    node left, right;
};
  
// Function to create new node
static node newNode(char ch)
{
      
    // Allocating a new node in the memory.
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
  
// Function to print Triple Order traversal
static void tripleOrderTraversal(node root)
{
    if (root != null)
    {
          
        // Print the current node
        System.out.print(root.data + " ");
  
        // Traverse left subtree
        tripleOrderTraversal(root.left);
  
        // Print the current node
        System.out.print(root.data + " ");
  
        // Traverse right subtree
        tripleOrderTraversal(root.right);
  
        // Print the current node
        System.out.print(root.data + " ");
    }
}
  
// Driver Code
public static void main(String[] args)
{
    node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('F');
    root.left.right = newNode('D');
    root.right.right = newNode('E');
  
    tripleOrderTraversal(root);
}
}
  
// This code is contributed by amal kumar choubey 

Python3




# Python3 program to implement triple
# order traversal of a binary tree
  
# Structure of node
class Node:
      
    # Initialise the node
    def __init__(self, ch):
          
        self.data = ch
        self.left = None
        self.right = None
          
# Function to print the Triple Order Traversal
def tripleOrderTraversal(root):
      
    if root:
          
        # Print the current node
        print(root.data, end = ' ')
          
        # Print the left subtree
        tripleOrderTraversal(root.left)
          
        # Print the current node
        print(root.data, end = ' ')
          
        # Print the right subtree
        tripleOrderTraversal(root.right)
          
        # Print the current node
        print(root.data, end = ' ')
          
# Driver code
root = Node('A')
root.left = Node('B')
root.right = Node('C')
root.left.left = Node('F')
root.left.right = Node('D')
root.right.right = Node('E')
  
tripleOrderTraversal(root)
      
# This code is contributed by Stuti Pathak

C#




// C# program to implement triple
// order traversal of a binary tree
using System;
  
class GFG{
  
// Structure of a Node
public class node
{
    public char data;
    public node left, right;
};
  
// Function to create new node
static node newNode(char ch)
{
      
    // Allocating a new node in the memory.
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
  
// Function to print Triple Order traversal
static void tripleOrderTraversal(node root)
{
    if (root != null)
    {
          
        // Print the current node
        Console.Write(root.data + " ");
  
        // Traverse left subtree
        tripleOrderTraversal(root.left);
  
        // Print the current node
        Console.Write(root.data + " ");
  
        // Traverse right subtree
        tripleOrderTraversal(root.right);
  
        // Print the current node
        Console.Write(root.data + " ");
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('F');
    root.left.right = newNode('D');
    root.right.right = newNode('E');
  
    tripleOrderTraversal(root);
}
}
  
// This code is contributed by amal kumar choubey 
Output: 
A B F F F B D D D B A C C E E E C A

Time Complexity: O(N) 
Auxiliary Space: O(1)
Applications: Euler tour of a tree is a modified version of triple order traversal.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :