# Triacontakaidigon Number

Given a number N, the task is to find Nth Triacontakaidigon number.

A Triacontakaidigon number is class of figurate number. It has 32 – sided polygon called triacontakaidigon. The N-th triacontakaidigon number count’s the 32 number of dots and all others dots are surrounding with a common sharing corner and make a pattern. The first few triacontakaidigonol numbers are 1, 32, 93, 184 …

Examples:

Input: N = 2
Output: 32
Explanation:
The second triacontakaidigonol number is 32.

Input: N = 3
Output: 93

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The N-th triacontakaidigon number is given by the formula:

• Nth term of s sided polygon =
• Therefore Nth term of 32 sided polygon is

Below is the implementation of the above approach:

## C++

 // C++ program for above approach  #include  using namespace std;     // Finding the nth triacontakaidigon Number  int triacontakaidigonNum(int n)  {      return (30 * n * n - 28 * n) / 2;  }     // Driver Code  int main()  {      int n = 3;      cout << "3rd triacontakaidigon Number is = "          << triacontakaidigonNum(n);         return 0;  }     // This code is contributed by Akanksha_Rai

## C

 // C program for above approach  #include  #include     // Finding the nth triacontakaidigon Number  int triacontakaidigonNum(int n)  {      return (30 * n * n - 28 * n) / 2;  }     // Driver program to test above function  int main()  {      int n = 3;      printf("3rd triacontakaidigon Number is = %d",             triacontakaidigonNum(n));         return 0;  }

## Java

 // Java program for above approach  class GFG{         // Finding the nth triacontakaidigon number   public static int triacontakaidigonNum(int n)   {       return (30 * n * n - 28 * n) / 2;   }     // Driver code      public static void main(String[] args)  {      int n = 3;              System.out.println("3rd triacontakaidigon Number is = " +                                       triacontakaidigonNum(n));  }  }     // This code is contributed by divyeshrabadiya07

## Python3

 # Python3 program for above approach      # Finding the nth triacontakaidigon Number   def triacontakaidigonNum(n):              return (30 * n * n - 28 * n) // 2    # Driver Code  n = 3 print("3rd triacontakaidigon Number is = ",                      triacontakaidigonNum(n))      # This code is contributed by divyamohan123

## C#

 // C# program for above approach  using System;  class GFG{         // Finding the nth triacontakaidigon number   public static int triacontakaidigonNum(int n)   {       return (30 * n * n - 28 * n) / 2;   }     // Driver code   public static void Main(String[] args)  {      int n = 3;              Console.WriteLine("3rd triacontakaidigon Number is = " +                                      triacontakaidigonNum(n));  }  }     // This code is contributed by 29AjayKumar

Output:

3rd triacontakaidigon Number is = 93


Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.