Traversal of tree with k jumps allowed between nodes of same height

There is a tree with N nodes and node 1 is the root node. Each node of the tree can contain fruit or not.
Initially, you are at the root node and start climbing on the tree.
You can jump from a node to any node at the same level(i.e. the height of nodes from the root are same),
During climbing from root node you can only make maximum K jumps. (K < 20)
Now you have to climb on the tree (from root node-> any leaf node) in such a way so that you can collect maximum no of fruits.
Example :

Input Tree : 
Number of Nodes N = 12
Number of jumps allowed : 2
Edges:
1 2
1 3
2 4
2 5
5 9
9 10
9 11
11 12
3 7
7 6
7 8
no of node having fruit(nf) : 8
Nodes Containing Fruits(lvn) : 2 4 5 7 8 9 11 12
Output: 7

Tree for above testcase :

Explanation:



Approach: The idea is to use DFS to create a Height Adjacency List of the Nodes and to store the parents. Then use another dfs to compute the maximum no of special nodes that can be reached using the following dp state:

dp[current_node][j] = max( max{ dp[child_i][j], for all children of current_node },
                         max{ dp[node_at_same_height_i][j - 1],
                         for all nodes at same height as current_node} )

Thus, dp[Root_Node][Total_no_of_Jumps] gives the answer to the problem.

Below is the implementation of above approach :

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to demonstrate tree traversal with 
// ability to jump between nodes of same height 
#include <bits/stdc++.h> 
using namespace std; 
    
#define N 1000 
    
vector<int> H[N]; 
    
// Arrays declaration 
int Fruit[N]; 
int Parent[N]; 
int dp[N][20]; 
    
// Function for DFS 
void dfs1(vector<int> tree[], int s, 
          int p, int h) 
    Parent[s] = p; 
    int i; 
    H[h].push_back(s); 
    for (i = 0; i < tree[s].size(); i++) { 
        int v = tree[s][i]; 
        if (v != p) 
            dfs1(tree, v, s, h + 1); 
    
    
// Function for DFS 
int dfs2(vector<int> tree[], int s, 
         int p, int h, int j) 
    int i; 
    int ans = 0; 
    if (dp[s][j] != -1) 
        return dp[s][j]; 
    
    // jump 
    if (j > 0) { 
        for (i = 0; i < H[h].size(); i++) { 
            int v = H[h][i]; 
            if (v != s) 
                ans = max(ans, dfs2(tree, v, 
                        Parent[v], h, j - 1)); 
        
    
    
    // climb 
    for (i = 0; i < tree[s].size(); i++) { 
        int v = tree[s][i]; 
        if (v != p) 
            ans = max(ans, dfs2(tree, v, s, h + 1, j)); 
    
    
    if (Fruit[s] == 1) 
        ans++; 
    dp[s][j] = ans; 
    
    return ans; 
    
// Function to calculate and 
// return maximum number of fruits 
int maxFruit(vector<int> tree[], 
             int NodesWithFruits[], 
             int n, int m, int k) 
    // reseting dp table and Fruit array 
    for (int i = 0; i < N; i++) { 
        for (int j = 0; j < 20; j++) 
            dp[i][j] = -1; 
        Fruit[i] = 0; 
    
    
    // This array is used to mark 
    // which nodes contain Fruits 
    for (int i = 0; i < m; i++) 
        Fruit[NodesWithFruits[i]] = 1; 
    
    dfs1(tree, 1, 0, 0); 
    int ans = dfs2(tree, 1, 0, 0, k); 
    
    return ans; 
    
// Function to add Edge 
void addEdge(vector<int> tree[], int u, int v) 
    tree[u].push_back(v); 
    tree[v].push_back(u); 
    
// Driver Code 
int main() 
    int n = 12; // Number of nodes 
    int k = 2; // Number of allowed jumps 
    
    vector<int> tree[N]; 
    
    // Edges 
    addEdge(tree, 1, 2); 
    addEdge(tree, 1, 3); 
    addEdge(tree, 2, 4); 
    addEdge(tree, 2, 5); 
    addEdge(tree, 5, 9); 
    addEdge(tree, 9, 10); 
    addEdge(tree, 9, 11); 
    addEdge(tree, 11, 12); 
    addEdge(tree, 3, 7); 
    addEdge(tree, 7, 6); 
    addEdge(tree, 7, 8); 
    
    int NodesWithFruits[] = { 2, 4, 5, 7, 8, 9, 11, 12 }; 
    
    // Number of nodes with fruits 
    int m = sizeof(NodesWithFruits) / sizeof(NodesWithFruits[0]); 
    
    int ans = maxFruit(tree, NodesWithFruits, n, m, k); 
    
    cout << ans << endl; 
    
    return 0; 

chevron_right


Output:

7

Time Complexity : O(n*n*k) (worst case, eg: 2 level tree with the root having n-1 child nodes)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : yogeshkurmi