Sum of the first N terms of the series 5,12, 23, 38….

Given a number N, the task is to find the sum of first N terms of the below series:

Sn = 5 + 12 + 23 + 38 + … upto n terms

Examples:

Input: N = 2
Output: 17
5 + 12
= 17

Input: N = 4 
Output: 80
5 + 12 + 23 + 38
= 78

Approach: Let, the nth term be denoted by tn.
This problem can easily with the help of a general formula for these type of series,

The series given above is a quadratic series. They are special because the difference of consecutive terms of this series will be in arithmetic progression.
There general formula is given by:

General Formula = a*(n^2) + b*n + c

Now, by putting first 3 terms of series in general formula we can get values of a, b and c.

Sn = 5 + 12 + 30 + 68 + ......
tn = 2 * (n^2) + n + 2
Sn = 2 * (n * (n+1) * (2 * n+1)/6) + n * (n+1)/2 + 2 * (n)

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of first n terms
#include <bits/stdc++.h>
using namespace std;
  
// Function to calculate the sum
int calculateSum(int n)
{
  
    return 2 * (n * (n + 1) * (2 * n + 1) / 6) 
               + n * (n + 1) / 2 + 2 * (n);
}
  
// Driver code
int main()
{
    // number of terms to be included in sum
    int n = 3;
  
    // find the Sn
    cout << "Sum = " << calculateSum(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of first n terms
  
import java.io.*;
  
class GFG {
  
// Function to calculate the sum
 static int calculateSum(int n)
{
  
    return 2 * (n * (n + 1) * (2 * n + 1) / 6
            + n * (n + 1) / 2 + 2 * (n);
}
  
// Driver code
  
    public static void main (String[] args) {
        // number of terms to be included in sum
    int n = 3;
  
    // find the Sn
    System.out.print( "Sum = " + calculateSum(n));
    }
}
// This code is contributed 
// by  anuj_67..

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find 
# sum of first n terms
  
# Function to calculate the sum 
def calculateSum(n) :
  
    return (2 * (n * (n + 1) * 
           (2 * n + 1) // 6) + n *
           (n + 1) // 2 + 2 * (n))
          
# Driver code     
if __name__ == "__main__" :
  
    # number of terms to be
    # included in sum 
    n = 3
  
    # find the Sn 
    print("Sum =",calculateSum(n)) 
  
# This code is contributed by ANKITRAI1

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum 
// of first n terms
using System;
  
class GFG
{
  
// Function to calculate the sum
static int calculateSum(int n)
{
  
    return 2 * (n * (n + 1) * (2 * n + 1) / 6) +
                n * (n + 1) / 2 + 2 * (n);
}
  
// Driver code
public static void Main () 
{
    // number of terms to be
    // included in sum
    int n = 3;
      
    // find the Sn
    Console.WriteLine("Sum = " + calculateSum(n));
}
}
  
// This code is contributed 
// by Shashank

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP program to find sum 
// of first n terms
  
// Function to calculate the sum
function calculateSum($n)
{
  
    return 2 * ($n * ($n + 1) * 
            (2 * $n + 1) / 6) + 
                $n * ($n + 1) / 
                2 + 2 * ($n);
}
  
// Driver code
  
// number of terms to 
// be included in sum
$n = 3;
  
// find the Sn
echo "Sum = " . calculateSum($n);
  
// This code is contributed
// by ChitraNayal
?>

chevron_right


Output:

Sum = 40


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, Shashank12, AnkitRai01, Ita_c