Given two integer N and D where 1 ? N ? 1018, the task is to find the sum of all the integers from 1 to N whose unit digit is D.
Examples:
Input: N = 30, D = 3
Output: 39
3 + 13 + 23 = 39
Input: N = 5, D = 7
Output: 0
Approach: In Set 1 we saw two basic approaches to find the required sum, but the complexity is O(N) which will take more time for larger N. Here’s an even efficient approach, suppose we are given N = 30 and D = 3:
sum = 3 + 13 + 23
sum = 3 + (10 + 3) + (20 + 3)
sum = 3 * (3) + (10 + 20)
From the above observation, we can find the sum following the steps below:
- Decrement N until N % 10 != D.
- Find K = N / 10.
- Now, sum = (K + 1) * D + (((K * 10) + (10 * K * K)) / 2).
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
#define ll long long int
ll getSum(ll n, int d)
{
if (n < d)
return 0;
while (n % 10 != d)
n--;
ll k = n / 10;
return (k + 1) * d + (k * 10 + 10 * k * k) / 2;
}
int main()
{
ll n = 30;
int d = 3;
cout << getSum(n, d);
return 0;
}
|
Java
import java.io.*;
class GFG {
static long getSum( long n, int d)
{
if (n < d)
return 0 ;
while (n % 10 != d)
n--;
long k = n / 10 ;
return (k + 1 ) * d + (k * 10 + 10 * k * k) / 2 ;
}
public static void main (String[] args) {
long n = 30 ;
int d = 3 ;
System.out.println(getSum(n, d)); }
}
|
Python3
def getSum(n, d) :
if (n < d) :
return 0
while (n % 10 ! = d) :
n - = 1
k = n / / 10
return ((k + 1 ) * d +
(k * 10 + 10 * k * k) / / 2 )
if __name__ = = "__main__" :
n = 30
d = 3
print (getSum(n, d))
|
C#
class GFG {
static int getSum( int n, int d)
{
if (n < d)
return 0;
while (n % 10 != d)
n--;
int k = n / 10;
return (k + 1) * d + (k * 10 + 10 * k * k) / 2;
}
public static void Main () {
int n = 30;
int d = 3;
System.Console.WriteLine(getSum(n, d)); }
}
|
PHP
<?php
function getSum( $n , $d )
{
if ( $n < $d )
return 0;
while ( $n % 10 != $d )
$n --;
$k = (int)( $n / 10);
return ( $k + 1) * $d +
( $k * 10 + 10 * $k * $k ) / 2;
}
$n = 30;
$d = 3;
echo getSum( $n , $d );
?>
|
Javascript
<script>
function getSum(n, d)
{
if (n < d)
return 0;
while (n % 10 != d)
n--;
k = parseInt(n / 10);
return (k + 1) * d +
(k * 10 + 10 * k * k) / 2;
}
let n = 30;
let d = 3;
document.write( getSum(n, d));
</script>
|
Time Complexity: O(n) //since one traversal of the loop till the number is required to complete all operations hence the overall time required by the algorithm is linear
Auxiliary Space: O(1) // since no extra array is used so the space taken by the algorithm is constant
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
21 Aug, 2022
Like Article
Save Article