Sum of integers upto N with given unit digit (Set 2)

Given two integer N and D where 1 ≤ N ≤ 1018, the task is to find the sum of all the integers from 1 to N whose unit digit is D.

Examples:

Input: N = 30, D = 3
Output: 39
3 + 13 + 23 = 39

Input: N = 5, D = 7
Output: 0

Approach: In Set 1 we saw two basic approaches to find the required sum, but the complexity is O(N) which will take more time for larger N. Here’s an even efficient approach, suppose we are given N = 30 and D = 3:

sum = 3 + 13 + 23
sum = 3 + (10 + 3) + (20 + 3)
sum = 3 * (3) + (10 + 20)

From the above observation, we can find the sum following the steps below:

  • Decrement N until N % 10 != D.
  • Find K = N / 10.
  • Now, sum = (K + 1) * D + (((K * 10) + (10 * K * K)) / 2).

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define ll long long int
  
// Function to return the required sum
ll getSum(ll n, int d)
{
    if (n < d)
        return 0;
  
    // Decrement N
    while (n % 10 != d)
        n--;
  
    ll k = n / 10;
  
    return (k + 1) * d + (k * 10 + 10 * k * k) / 2;
}
  
// Driver code
int main()
{
    ll n = 30;
    int d = 3;
    cout << getSum(n, d);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java  implementation of the approach
  
import java.io.*;
  
class GFG {
  
  
// Function to return the required sum
static long getSum(long n, int d)
{
    if (n < d)
        return 0;
  
    // Decrement N
    while (n % 10 != d)
        n--;
  
    long k = n / 10;
  
    return (k + 1) * d + (k * 10 + 10 * k * k) / 2;
}
  
// Driver code
  
    public static void main (String[] args) {
     long n = 30;
    int d = 3;
    System.out.println(getSum(n, d));    }
}
//This code is contributed by inder_verma..

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the required sum 
def getSum(n, d) :
      
    if (n < d) :
        return 0
  
    # Decrement N 
    while (n % 10 != d) :
        n -= 1
  
    k = n // 10
  
    return ((k + 1) * d + 
            (k * 10 + 10 * k * k) // 2)
  
# Driver code 
if __name__ == "__main__"
  
    n = 30
    d = 3
    print(getSum(n, d)) 
  
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
  
  
class GFG {
  
  
// Function to return the required sum
static int getSum(int n, int d)
{
    if (n < d)
        return 0;
  
    // Decrement N
    while (n % 10 != d)
        n--;
  
    int k = n / 10;
  
    return (k + 1) * d + (k * 10 + 10 * k * k) / 2;
}
  
// Driver code
  
    public static void Main () {
    int n = 30;
    int d = 3;
    System.Console.WriteLine(getSum(n, d)); }
}
//This code is contributed by mits.

chevron_right


PHP

Output:

39


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.