Give an array of positive integers. The task is to find the total sum after performing the bit wise OR operation on all the sub arrays of the given array.

**Examples**:

Input: arr[] = {1, 2, 3, 4, 5}Output: 71Input: arr[] = {6, 5, 4, 3, 2}Output: 84

**Explanation**:

**Simple Approach**: A simple approach is to find the bitwise OR of each subarray of the given array using two nested loops, and then find the total sum. Time complexity of this approach will be O(N^{2}).

**Efficient Approach**:

- Observe here that if a bit is being set by an element of the array then all subarray having that element will have that bit set. Therefore when we calculate sum of all subarrays having that number, we can directly multiply number of subarrays by the value that bit is making.
- Now, to do this an easy way will be to calculate the number of subarrays for which a bit is not set and subtract it from the total number of subarrays.

Let’s see an example:

Let the array **A = [1, 2, 3, 4, 5]**. Now the 1st bit is not set in the elements 2 and 4 and total number of such subarrays for which the Bitwise-OR will not have the 1st bit set will be 2.

Therefore, total number of subarrays for which the bitwise-OR will have 1st bit as set will be: 15-2 = 13.

Therefore we will add (13 * pow(2, 0)) to sum.

Below is the implementation of the above approach:

## C++

`// C++ program to find sum of bitwise OR ` `// of all subarrays ` ` ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to find sum of bitwise OR ` `// of all subarrays ` `int` `givesum(` `int` `A[], ` `int` `n) ` `{ ` ` ` `// Find max element of the array ` ` ` `int` `max = *max_element(A, A + n); ` ` ` ` ` `// Find the max bit position set in ` ` ` `// the array ` ` ` `int` `maxBit = log2(max) + 1; ` ` ` ` ` `int` `totalSubarrays = n * (n + 1) / 2; ` ` ` ` ` `int` `s = 0; ` ` ` ` ` `// Traverse from 1st bit to last bit which ` ` ` `// can be set in any element of the array ` ` ` `for` `(` `int` `i = 0; i < maxBit; i++) { ` ` ` `int` `c1 = 0; ` ` ` ` ` `// Vector to store indexes of the array ` ` ` `// with i-th bit not set ` ` ` `vector<` `int` `> vec; ` ` ` ` ` `int` `sum = 0; ` ` ` ` ` `// Traverse the array ` ` ` `for` `(` `int` `j = 0; j < n; j++) { ` ` ` ` ` `// Check if ith bit is not set in A[j] ` ` ` `int` `a = A[j] >> i; ` ` ` `if` `(!(a & 1)) { ` ` ` `vec.push_back(j); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Variable to store count of subarrays ` ` ` `// whose bitwise OR will have i-th bit ` ` ` `// not set ` ` ` `int` `cntSubarrNotSet = 0; ` ` ` ` ` `int` `cnt = 1; ` ` ` ` ` `for` `(` `int` `j = 1; j < vec.size(); j++) { ` ` ` `if` `(vec[j] - vec[j - 1] == 1) { ` ` ` `cnt++; ` ` ` `} ` ` ` `else` `{ ` ` ` `cntSubarrNotSet += cnt * (cnt + 1) / 2; ` ` ` ` ` `cnt = 1; ` ` ` `} ` ` ` `} ` ` ` ` ` `// For last element of vec ` ` ` `cntSubarrNotSet += cnt * (cnt + 1) / 2; ` ` ` ` ` `// Variable to store count of subarrays ` ` ` `// whose bitwise OR will have i-th bit set ` ` ` `int` `cntSubarrIthSet = totalSubarrays - cntSubarrNotSet; ` ` ` ` ` `s += cntSubarrIthSet * ` `pow` `(2, i); ` ` ` `} ` ` ` ` ` `return` `s; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `A[] = { 1, 2, 3, 4, 5 }; ` ` ` `int` `n = ` `sizeof` `(A) / ` `sizeof` `(A[0]); ` ` ` ` ` `cout << givesum(A, n); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Python3

# Python 3 program to find sum of

# bitwise OR of all subarrays

# from math lib. import log2 function

from math import log2

# Function to find sum of bitwise OR

# of all subarrays

def givesum(A, n) :

# Find max element of the array

max_element = max(A)

# Find the max bit position set in

# the array

maxBit = int(log2(max_element)) + 1

totalSubarrays = n * (n + 1) // 2

s = 0

# Traverse from 1st bit to last bit which

# can be set in any element of the array

for i in range(maxBit) :

c1 = 0

# List to store indexes of the array

# with i-th bit not set

vec = []

sum = 0

# Traverse the array

for j in range(n) :

# Check if ith bit is not set in A[j]

a = A[j] >> i

if (not(a & 1)) :

vec.append(j)

# Variable to store count of subarrays

# whose bitwise OR will have i-th bit

# not set

cntSubarrNotSet = 0

cnt = 1

for j in range(1, len(vec)) :

if (vec[j] – vec[j – 1] == 1) :

cnt += 1

else :

cntSubarrNotSet += cnt * (cnt + 1) // 2

cnt = 1

# For last element of vec

cntSubarrNotSet += cnt * (cnt + 1) // 2

# Variable to store count of subarrays

# whose bitwise OR will have i-th bit set

cntSubarrIthSet = totalSubarrays – cntSubarrNotSet

s += cntSubarrIthSet * pow(2, i)

return s

# Driver code

if __name__ == “__main__” :

A = [ 1, 2, 3, 4, 5 ]

n = len(A)

print(givesum(A, n))

# This code is contributed by Ryuga

**Output:**

71

**Time Complexity**: O(N*logN)

## Recommended Posts:

- Differences between number of increasing subarrays and decreasing subarrays in k sized windows
- Split an array into two equal Sum subarrays
- Split array in three equal sum subarrays
- Find if array can be divided into two subarrays of equal sum
- Count subarrays consisting of only 0's and only 1's in a binary array
- Split array to three subarrays such that sum of first and third subarray is equal and maximum
- Queries for decimal values of subarrays of a binary array
- Count subarrays having total distinct elements same as original array
- Find an element which divides the array in two subarrays with equal product
- Sum of all Subarrays | Set 1
- Sum of bitwise OR of all subarrays
- Number of subarrays with odd sum
- Print all subarrays with 0 sum
- Number of subarrays having sum less than K
- Queries on XOR of XORs of all subarrays

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.