Skip to content
Related Articles

Related Articles

Improve Article

Sum of Bitwise AND of all pairs possible from two arrays

  • Last Updated : 07 Apr, 2021

Given two arrays A[] and B[] of size N and M respectively, the task is to find the sum of Bitwise AND of all possible unordered pairs (A[i], B[j]) from the two arrays.

Examples:

Input: A[] = {1, 2} , B[] = {3, 4} 
Output:
Explanation: 
Bitwise AND of all possible pairs are 
1 & 3  = 1 
1 & 4 = 0 
2 & 3 = 2 
2 & 4 = 0 
Therefore, the sum of bitwise AND of all possible pairs are = (1 + 0 + 2 + 0) = 3

Input: A[] = {4, 6, 0, 0, 3, 3}, B[] = {0, 5, 6, 5, 0, 3} 
Output: 42

 

Approach: To solve the problem, the idea is to traverse both the arrays and generate all possible pairs from the given two arrays and keep adding their respective Bitwise ANDs. Finally, print the sum of Bitwise AND of all possible pairs (A[i], B[j]) obtained from the two given arrays.



Follow the steps below to solve the problem:

  • Initialize a variable, say pairsAndSum to store the sum of Bitwise AND of all possible pairs.
  • Traverse both the array and generate all possible pairs from the given two arrays.
  • Finally, calculate the sum of Bitwise AND of all possible pairs from both the arrays and print the sum.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of
// AND of all possible pair
int sumOfAnd(int A[], int B[],
                int N, int M)
{
 
    // Stores sum of bitwise AND
    // of  all possible pair
    int pairsAndSum = 0;
 
    // Traverse the array A[]
    for (int i = 0; i < N; i++) {
         
       // Traverse the array B[]
        for (int j = 0; j < M;
                           j++) {
 
            // Update pairsAndSum
            pairsAndSum +=
                   (A[i] & B[j]);
        }
    }
     
    return pairsAndSum;
}
 
// Driver Code
int main()
{
 
    int A[] = { 4, 6, 0, 0, 3, 3 };
    int B[] = { 0, 5, 6, 5, 0, 3 };
 
    int N = sizeof(A) / sizeof(A[0]);
 
    int M = sizeof(B) / sizeof(B[0]);
     
    cout << sumOfAnd(A, B, N, M);
 
    return 0;
}

Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to find the sum of
// AND of all possible pair
static int sumOfAnd(int A[], int B[],
                    int N, int M)
{
  // Stores sum of bitwise AND
  // of  all possible pair
  int pairsAndSum = 0;
 
  // Traverse the array A[]
  for (int i = 0; i < N; i++)
  {
    // Traverse the array B[]
    for (int j = 0; j < M; j++)
    {
      // Update pairsAndSum
      pairsAndSum += (A[i] & B[j]);
    }
  }
 
  return pairsAndSum;
}
 
// Driver Code
public static void main(String[] args)
{
  int A[] = {4, 6, 0, 0, 3, 3};
  int B[] = {0, 5, 6, 5, 0, 3};
  int N = A.length;
  int M = B.length;
  System.out.print(sumOfAnd(A, B,
                            N, M));
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python3 program to implement
# the above approach
 
# Function to find the sum of
# AND of all possible pair
def sumOfAnd(A, B, N, M):
     
    # Stores sum of bitwise AND
    # of all possible pair
    pairsAndSum = 0
 
    # Traverse the array A
    for i in range(N):
         
        # Traverse the array B
        for j in range(M):
             
            # Update pairsAndSum
            pairsAndSum += (A[i] & B[j])
 
    return pairsAndSum
 
# Driver Code
if __name__ == '__main__':
     
    A = [ 4, 6, 0, 0, 3, 3 ]
    B = [ 0, 5, 6, 5, 0, 3 ]
     
    N = len(A)
    M = len(B)
     
    print(sumOfAnd(A, B, N, M))
 
# This code is contributed by Amit Katiyar

C#




// C# Program to implement
// the above approach
using System;
class GFG{
 
// Function to find the sum of
// AND of all possible pair
static int sumOfAnd(int []A, int []B,
                    int N, int M)
{
  // Stores sum of bitwise AND
  // of  all possible pair
  int pairsAndSum = 0;
 
  // Traverse the array []A
  for (int i = 0; i < N; i++)
  {
    // Traverse the array []B
    for (int j = 0; j < M; j++)
    {
      // Update pairsAndSum
      pairsAndSum += (A[i] & B[j]);
    }
  }
 
  return pairsAndSum;
}
 
// Driver Code
public static void Main(String[] args)
{
  int []A = {4, 6, 0, 0, 3, 3};
  int []B = {0, 5, 6, 5, 0, 3};
  int N = A.Length;
  int M = B.Length;
  Console.Write(sumOfAnd(A, B,
                            N, M));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript Program to implement
// the above approach
 
// Function to find the sum of
// AND of all possible pair
function sumOfAnd(A, B, N, M)
{
 
    // Stores sum of bitwise AND
    // of all possible pair
    var pairsAndSum = 0;
 
    // Traverse the array A[]
    for (var i = 0; i < N; i++) {
         
    // Traverse the array B[]
        for (var j = 0; j < M;
                        j++) {
 
            // Update pairsAndSum
            pairsAndSum +=
                (A[i] & B[j]);
        }
    }
     
    return pairsAndSum;
}
 
// Driver Code
var A = [ 4, 6, 0, 0, 3, 3 ];
var B = [ 0, 5, 6, 5, 0, 3 ];
var N = A.length;
var M = B.length;
 
document.write(sumOfAnd(A, B, N, M));
 
</script>
Output: 
42

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :