Sum of Bitwise AND of all pairs possible from two arrays

Given two arrays A[] and B[] of size N and M respectively, the task is to find the sum of Bitwise AND of all possible unordered pairs (A[i], B[j]) from the two arrays.

Examples:

Input: A[] = {1, 2} , B[] = {3, 4} 
Output:
Explanation: 
Bitwise AND of all possible pairs are 
1 & 3  = 1 
1 & 4 = 0 
2 & 3 = 2 
2 & 4 = 0 
Therefore, the sum of bitwise AND of all possible pairs are = (1 + 0 + 2 + 0) = 3

Input: A[] = {4, 6, 0, 0, 3, 3}, B[] = {0, 5, 6, 5, 0, 3} 
Output: 42

 

Approach: To solve the problem, the idea is to traverse both the arrays and generate all possible pairs from the given two arrays and keep adding their respective Bitwise ANDs. Finally, print the sum of Bitwise AND of all possible pairs (A[i], B[j]) obtained from the two given arrays.



Follow the steps below to solve the problem:

  • Initialize a variable, say pairsAndSum to store the sum of Bitwise AND of all possible pairs.
  • Traverse both the array and generate all possible pairs from the given two arrays.
  • Finally, calculate the sum of Bitwise AND of all possible pairs from both the arrays and print the sum.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of
// AND of all possible pair
int sumOfAnd(int A[], int B[],
                int N, int M)
{
 
    // Stores sum of bitwise AND
    // of  all possible pair
    int pairsAndSum = 0;
 
    // Traverse the array A[]
    for (int i = 0; i < N; i++) {
         
       // Traverse the array B[]
        for (int j = 0; j < M;
                           j++) {
 
            // Update pairsAndSum
            pairsAndSum +=
                   (A[i] & B[j]);
        }
    }
     
    return pairsAndSum;
}
 
// Driver Code
int main()
{
 
    int A[] = { 4, 6, 0, 0, 3, 3 };
    int B[] = { 0, 5, 6, 5, 0, 3 };
 
    int N = sizeof(A) / sizeof(A[0]);
 
    int M = sizeof(B) / sizeof(B[0]);
     
    cout << sumOfAnd(A, B, N, M);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to find the sum of
// AND of all possible pair
static int sumOfAnd(int A[], int B[],
                    int N, int M)
{
  // Stores sum of bitwise AND
  // of  all possible pair
  int pairsAndSum = 0;
 
  // Traverse the array A[]
  for (int i = 0; i < N; i++)
  {
    // Traverse the array B[]
    for (int j = 0; j < M; j++)
    {
      // Update pairsAndSum
      pairsAndSum += (A[i] & B[j]);
    }
  }
 
  return pairsAndSum;
}
 
// Driver Code
public static void main(String[] args)
{
  int A[] = {4, 6, 0, 0, 3, 3};
  int B[] = {0, 5, 6, 5, 0, 3};
  int N = A.length;
  int M = B.length;
  System.out.print(sumOfAnd(A, B,
                            N, M));
}
}
 
// This code is contributed by gauravrajput1

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
 
# Function to find the sum of
# AND of all possible pair
def sumOfAnd(A, B, N, M):
     
    # Stores sum of bitwise AND
    # of all possible pair
    pairsAndSum = 0
 
    # Traverse the array A
    for i in range(N):
         
        # Traverse the array B
        for j in range(M):
             
            # Update pairsAndSum
            pairsAndSum += (A[i] & B[j])
 
    return pairsAndSum
 
# Driver Code
if __name__ == '__main__':
     
    A = [ 4, 6, 0, 0, 3, 3 ]
    B = [ 0, 5, 6, 5, 0, 3 ]
     
    N = len(A)
    M = len(B)
     
    print(sumOfAnd(A, B, N, M))
 
# This code is contributed by Amit Katiyar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to implement
// the above approach
using System;
class GFG{
 
// Function to find the sum of
// AND of all possible pair
static int sumOfAnd(int []A, int []B,
                    int N, int M)
{
  // Stores sum of bitwise AND
  // of  all possible pair
  int pairsAndSum = 0;
 
  // Traverse the array []A
  for (int i = 0; i < N; i++)
  {
    // Traverse the array []B
    for (int j = 0; j < M; j++)
    {
      // Update pairsAndSum
      pairsAndSum += (A[i] & B[j]);
    }
  }
 
  return pairsAndSum;
}
 
// Driver Code
public static void Main(String[] args)
{
  int []A = {4, 6, 0, 0, 3, 3};
  int []B = {0, 5, 6, 5, 0, 3};
  int N = A.Length;
  int M = B.Length;
  Console.Write(sumOfAnd(A, B,
                            N, M));
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Output: 

42










 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Strategy Path planning and Destination matters in success No need to worry about in between temporary failures

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.