Sum of all perfect numbers present in an array

Given an array arr[] containing N positive integer. The task is to find the sum of all the perfect numbers from the array.
A number is perfect if is equal to sum of its proper divisors i.e. sum of its positive divisors excluding the number itself.

Examples:

Input: arr[] = {3, 6, 9}
Output:
Proper divisor sum of 3 = 1
Proper divisor sum of 6 = 1 + 2 + 3 = 6
Proper divisor sum of 9 = 1 + 3 = 4



Input: arr[] = {17, 6, 10, 6, 4}
Output: 12

Approach: Initialise sum = 0 and for every element of the array, find the sum of its proper divisors say sumFactors. If arr[i] = sumFactors then update the resultant sum as sum = sum + arr[i]. Print the sum in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <iostream>
using namespace std;
  
// Function to return the sum of
// all the proper factors of n
int sumOfFactors(int n)
{
    int sum = 0;
    for (int f = 1; f <= n / 2; f++) 
    {
  
        // f is the factor of n
        if (n % f == 0) 
        {
            sum += f;
        }
    }
    return sum;
}
  
// Function to return the required sum
int getSum(int arr[], int n)
{
  
    // To store the sum
    int sum = 0;
    for (int i = 0; i < n; i++)
    {
  
        // If current element is non-zero and equal
        // to the sum of proper factors of itself
        if (arr[i] > 0 && 
            arr[i] == sumOfFactors(arr[i])) 
        {
            sum += arr[i];
        }
    }
    return sum;
}
  
// Driver code
int main() 
{
    int arr[10] = { 17, 6, 10, 6, 4 };
      
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << (getSum(arr, n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG {
  
    // Function to return the sum of
    // all the proper factors of n
    static int sumOfFactors(int n)
    {
        int sum = 0;
        for (int f = 1; f <= n / 2; f++) {
  
            // f is the factor of n
            if (n % f == 0) {
                sum += f;
            }
        }
        return sum;
    }
  
    // Function to return the required sum
    static int getSum(int[] arr, int n)
    {
  
        // To store the sum
        int sum = 0;
        for (int i = 0; i < n; i++) {
  
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) {
                sum += arr[i];
            }
        }
        return sum;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 17, 6, 10, 6, 4 };
        int n = arr.length;
        System.out.print(getSum(arr, n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
  
# Function to return the sum of
# all the proper factors of n
def sumOfFactors(n):
  
    sum = 0
    for f in range(1, n // 2 + 1): 
  
        # f is the factor of n
        if (n % f == 0):
            sum += f
          
    return sum
  
# Function to return the required sum
def getSum(arr, n):
      
    # To store the sum
    sum = 0
    for i in range(n):
  
        # If current element is non-zero and equal
        # to the sum of proper factors of itself
        if (arr[i] > 0 and 
            arr[i] == sumOfFactors(arr[i])) :
            sum += arr[i]
      
    return sum
  
# Driver code
arr = [17, 6, 10, 6, 4]
  
n = len(arr)
print(getSum(arr, n))
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
  
class GFG
{
      
    // Function to return the sum of
    // all the proper factors of n
    static int sumOfFactors(int n)
    {
        int sum = 0;
        for (int f = 1; f <= n / 2; f++) 
        {
  
            // f is the factor of n
            if (n % f == 0) 
            {
                sum += f;
            }
        }
        return sum;
    }
  
    // Function to return the required sum
    static int getSum(int[] arr, int n)
    {
  
        // To store the sum
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
  
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) 
            {
                sum += arr[i];
            }
        }
        return sum;
    }
  
    // Driver code
    static public void Main ()
    {
        int[] arr = { 17, 6, 10, 6, 4 };
        int n = arr.Length;
        Console.WriteLine(getSum(arr, n));
    }
}
  
// This code is contributed by @ajit_0023

chevron_right


Output:

12


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t, mohit kumar 29