Skip to content
Related Articles

Related Articles

Improve Article
Sum of all Perfect Cubes lying in the range [L, R] for Q queries
  • Last Updated : 05 Apr, 2021

Given Q queries in the form of 2D array arr[][] whose every row consists of two numbers L and R which signifies the range [L, R], the task is to find the sum of all perfect cubes lying in this range.
Examples: 
 

Input: Q = 2, arr[][] = {{4, 9}, {4, 44}} 
Output: 8 35 
From 4 to 9: only 8 is the perfect cube. Therefore, 8 is the ans 
From 4 to 44: 8, and 27 are the perfect cubes. Therefore, 8 + 27 = 35
Input: Q = 4, arr[][] = {{ 1, 10 }, { 1, 100 }, { 2, 25 }, { 4, 50 }} 
Output: 9 100 8 35 
 

 

Approach: The idea is to use a prefix sum array
 

  1. The sum all cubes are precomputed and stored in an array pref[] so that every query can be answered in O(1) time.
  2. Every ith index in the pref[] array represents the sum of perfect cubes from 1 to that number.
  3. Therefore, the sum of perfect cubes from the given range ‘L’ to ‘R’ can be found as from the prefix sum array pref[].

Below is the implementation of the above approach: 
 



C++




// C++ program to find the sum of all
// perfect cubes in the given range
 
#include <bits/stdc++.h>
#define ll int
using namespace std;
 
// Array to precompute the sum of cubes
// from 1 to 100010 so that for every
// query, the answer can be returned in O(1).
long long pref[100010];
 
// Function to check if a number is
// a perfect Cube or not
int isPerfectCube(long long int x)
{
    // Find floating point value of
    // cube root of x.
    long double cr = round(cbrt(x));
 
    // If cube root of x is cr
    // return the x, else 0
    return (cr * cr * cr == x) ? x : 0;
}
 
// Function to precompute the perfect
// Cubes upto 100000.
void compute()
{
    for (int i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isPerfectCube(i);
    }
}
 
// Function to print the sum for each query
void printSum(int L, int R)
{
    int sum = pref[R] - pref[L - 1];
    cout << sum << " ";
}
 
// Driver code
int main()
{
    // To calculate the precompute function
    compute();
 
    int Q = 4;
    int arr[][2] = { { 1, 10 },
                     { 1, 100 },
                     { 2, 25 },
                     { 4, 50 } };
 
    // Calling the printSum function
    // for every query
    for (int i = 0; i < Q; i++) {
        printSum(arr[i][0], arr[i][1]);
    }
 
    return 0;
}

Java




// Java program to find the sum of all
// perfect cubes in the given range
import java.util.*;
import java.lang.*;
import java.io.*;
 
/* Name of the class has to be "Main" only if the class is public. */
class GFG
{
    // Array to precompute the sum of cubes
    // from 1 to 100010 so that for every
    // query, the answer can be returned in O(1).
     public static int []pref=new int[100010];
       
    // Function to check if a number is
    // a perfect Cube or not
    static int isPerfectCube(int x)
    {
        // Find floating point value of
        // cube root of x.
        double cr = Math.round(Math.cbrt(x));
       
        // If cube root of x is cr
        // return the x, else 0
        if(cr*cr*cr==(double)x) return x;
        return 0;
    }
       
    // Function to precompute the perfect
    // Cubes upto 100000.
    static void compute()
    {
        for (int i = 1; i <= 100000; ++i) {
            pref[i] = pref[i - 1]+ isPerfectCube(i);
        }
    }
       
    // Function to print the sum for each query
    static void printSum(int L, int R)
    {
        long sum = pref[R] - pref[L - 1];
        System.out.print(sum+" ");
    }
       
   
    
    // Driver code
    public static void main (String[] args)
    {
         // To calculate the precompute function
        compute();
       
        int Q = 4;
        int [][] arr = { { 1, 10 },
                                { 1, 100 },
                                { 2, 25 },
                                { 4, 50 } };
       
        // Calling the printSum function
        // for every query
        for (int i = 0; i < Q; i++) {
            printSum(arr[i][0], arr[i][1]);
        }
    }
}
 
// This code is contributed by chitranayal

Python3




# Python3 program to find the sum of all
# perfect cubes in the given range
 
# Array to precompute the sum of cubes
# from 1 to 100010 so that for every
# query, the answer can be returned in O(1).
pref = [0]*100010;
 
# Function to check if a number is
# a perfect Cube or not
def isPerfectCube(x) :
 
    # Find floating point value of
    # cube root of x.
    cr = round(x**(1/3));
 
    # If cube root of x is cr
    # return the x, else 0
    rslt = x if (cr * cr * cr == x) else 0;
    return rslt;
 
# Function to precompute the perfect
# Cubes upto 100000.
def compute() :
    for i in range(1, 100001) :
        pref[i] = pref[i - 1] + isPerfectCube(i);
 
# Function to print the sum for each query
def printSum(L, R) :
 
    sum = pref[R] - pref[L - 1];
    print(sum ,end= " ");
 
# Driver code
if __name__ == "__main__" :
 
    # To calculate the precompute function
    compute();
 
    Q = 4;
    arr= [ [ 1, 10 ],
            [ 1, 100 ],
            [ 2, 25 ],
            [ 4, 50 ] ];
 
    # Calling the printSum function
    # for every query
    for i in range(Q) :
        printSum(arr[i][0], arr[i][1]);
 
# This code is contributed by AnkitRai01

C#




// C# program to find the sum of all
// perfect cubes in the given range
using System;
       
class GFG {
// Array to precompute the sum of cubes
// from 1 to 100010 so that for every
// query, the answer can be returned in O(1).
 public static long []pref=new long[100010];
  
// Function to check if a number is
// a perfect Cube or not
static long isPerfectCube(long x)
{
    // Find floating point value of
    // cube root of x.
    double cr = Math.Round(MathF.Cbrt(x));
  
    // If cube root of x is cr
    // return the x, else 0
    if(cr*cr*cr==(double)x) return x;
    return 0;
}
  
// Function to precompute the perfect
// Cubes upto 100000.
static void compute()
{
    for (long i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isPerfectCube(i);
    }
}
  
// Function to print the sum for each query
static void printSum(int L, int R)
{
    long sum = pref[R] - pref[L - 1];
    Console.Write(sum+" ");
}
  
// Driver code
public static void Main()
  {
    // To calculate the precompute function
    compute();
  
    int Q = 4;
    int [,] arr = new int[,]{ { 1, 10 },
                            { 1, 100 },
                            { 2, 25 },
                            { 4, 50 } };
  
    // Calling the printSum function
    // for every query
    for (int i = 0; i < Q; i++) {
        printSum(arr[i,0], arr[i,1]);
    }
  }
 
// This code is contributed by mohit kumar 29

Javascript




<script>
 
// Javascript program to find the sum of all
// perfect cubes in the given range
 
// Array to precompute the sum of cubes
// from 1 to 100010 so that for every
// query, the answer can be returned in O(1).
var pref=Array(100010).fill(0);
 
// Function to check if a number is
// a perfect Cube or not
function isPerfectCube(x)
{
    // Find floating point value of
    // cube root of x.
    var cr = Math.round(Math.cbrt(x));
 
    // If cube root of x is cr
    // return the x, else 0
    return (cr * cr * cr == x) ? x : 0;
}
 
// Function to precompute the perfect
// Cubes upto 100000.
function compute()
{
    for (var i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isPerfectCube(i);
    }
}
 
// Function to print the sum for each query
function printSum(L, R)
{
    var sum = pref[R] - pref[L - 1];
    document.write(sum + " ");
}
 
// Driver code
 
// To calculate the precompute function
compute();
var Q = 4;
var arr = [ [ 1, 10 ],
                 [ 1, 100 ],
                 [ 2, 25 ],
                 [ 4, 50 ] ];
// Calling the printSum function
// for every query
for (var i = 0; i < Q; i++) {
    printSum(arr[i][0], arr[i][1]);
}
 
</script>
Output: 
9 100 8 35

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :