Open In App
Related Articles

Perfect cubes in a range

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given two given numbers a and b where 1 <= a <= b, find perfect cubes between a and b (a and b inclusive).
Examples: 
 

Input  :  a = 1, b = 100
Output : 1 8 27 64
Perfect cubes in the given range are 
1, 8, 27, 64

Input :  a = 24, b = 576
Output : 27 64 125 216 343 512
Perfect cubes in the given range are 
27, 64, 125, 216, 343, 512


 


This problem is similar to Perfect squares between two numbers.
Method 1 (Naive) : One naive approach is to check all the numbers between a and b (inclusive a and b) 
and print the perfect cube. Following is the code for the above approach: 
 

C++

// A Simple Method to count cubes between a and b
#include <bits/stdc++.h>
using namespace std;
  
void printCubes(int a, int b)
{
    // Traverse through all numbers in given range
    // and one by one check if number is prime
    for (int i = a; i <= b; i++) {
        // Check if current number 'i'
        // is perfect cube
        for (int j = 1; j * j * j <= i; j++) {
            if (j * j * j == i) {
                cout << j * j * j << "  ";
                break;
            }
        }
    }
}
  
// Driver code
int main()
{
    int a = 1, b = 100;
    cout << "Perfect cubes in given range:\n ";
    printCubes(a, b);
    return 0;
}

                    

Java

// A Simple Method to count cubes between a and b
  
class Test {
  
    static void printCubes(int a, int b)
    {
  
        // Traverse through all numbers in given range
        // and one by one check if number is prime
        for (int i = a; i <= b; i++) {
  
            // Check if current number 'i'
            // is perfect cube
            for (int j = 1; j * j * j <= i; j++) {
                if (j * j * j == i) {
                    System.out.print(j * j * j + "  ");
                    break;
                }
            }
        }
    }
    // Driver method
    public static void main(String[] args)
    {
        int a = 1, b = 100;
        System.out.println("Perfect cubes in given range:");
        printCubes(a, b);
    }
}

                    

Python3

# A Simple Method to count cubes between a and b
  
def printCubes(a, b) :
    # Traverse through all numbers in given range
    # and one by one check if number is prime
    for i in range(a, b + 1) :
          
        # Check if current number 'i'
        # is perfect cube
        j = 1
        for j in range(j ** 3, i + 1 ) :
              
            if (j ** 3 == i) :
                print( j ** 3, end = " ")
                break
              
  
# Driver code
  
a = 1; b = 100
print("Perfect cubes in given range: ")
printCubes(a, b)
  
  
# This code is contributed by Nikita Tiwari.

                    

C#

// A Simple Method to count cubes
// between a and b
using System;
  
class GFG {
  
    static void printCubes(int a, int b)
    {
  
        // Traverse through all numbers
        // in given range and one by
        // one check if number is prime
        for (int i = a; i <= b; i++) {
  
            // Check if current number 'i'
            // is perfect cube
            for (int j = 1; j * j * j <= i; j++) {
                if (j * j * j == i) {
                    Console.Write(j * j * j + " ");
                    break;
                }
            }
        }
    }
  
    // Driver method
    public static void Main()
    {
        int a = 1, b = 100;
  
        Console.WriteLine("Perfect cubes in"
                          + " given range:");
        printCubes(a, b);
    }
}
  
// This code contribute by parashar.

                    

PHP

<?php
// A Simple Method to count 
// cubes between a and b
  
function printCubes($a, $b)
{
      
    // Traverse through all 
    // numbers in given range
    // and one by one check 
    // if number is prime
    for ($i = $a; $i <= $b; $i++)
    {
          
        // Check if current number 'i'
        // is perfect cube
        for ($j = 1; $j * $j * $j <= $i; $j++)
        {
            if ($j * $j * $j == $i)
            {
                echo $j * $j * $j, " ";
                break;
            }
        }
    }
}
      
    // Driver Code
    $a = 1; 
    $b = 100;
    echo "Perfect cubes in given range:\n ";
    printCubes($a, $b);
  
// This code is contributed by ajit 
?>

                    

Javascript

<script>
// A Simple Method to count
// cubes between a and b
function printCubes(a, b)
{
      
    // Traverse through all
    // numbers in given range
    // and one by one check
    // if number is prime
    for (let i = a; i <= b; i++)
    {
          
        // Check if current number 'i'
        // is perfect cube
        for (let j = 1; j * j * j <= i; j++)
        {
            if (j * j * j == i)
            {
                document.write(j * j * j + " ");
                break;
            }
        }
    }
}
      
    // Driver Code
    let a = 1;
    let b = 100;
    document.write("Perfect cubes in given range: <br> ");
    printCubes(a, b);
  
// This code is contributed by gfgking.
  
</script>

                    

Output : 
 

Perfect cubes in given range:
 1 8 27 64


Method 2 (Efficient): 
We can simply take cube root of ‘a’ and cube root of ‘b’ and print the cubes of number between them.
 

1-  Given a = 24 b = 576

2-  acr = cbrt(a))  bcr = cbrt(b)
    acr = 3 and bcr = 8

3-  Print cubes of 3 to 8 that comes under 
    the range of a and b(including a and b
    both)
    27, 64, 125, 216, 343, 512


Below is implementation of above steps. 
 

C++

// Efficient method to print cubes
// between a and b
#include <cmath>
#include <iostream>
using namespace std;
  
// An efficient solution to print perfect
// cubes between a and b
void printCubes(int a, int b)
{
    // Find cube root of both a and b
    int acrt = cbrt(a);
    int bcrt = cbrt(b);
  
    // Print cubes between acrt and bcrt
    for (int i = acrt; i <= bcrt; i++)
        if (i * i * i >= a && i * i * i <= b)
            cout << i * i * i << " ";
}
  
// Driver code
int main()
{
    int a = 24, b = 576;
    cout << "Perfect cubes in given range:\n";
    printCubes(a, b);
  
    return 0;
}
// improved by prophet1999

                    

Java

// Java progroam for Efficient method
// to print cubes between a and b
  
class Test {
    // An efficient solution to print perfect
    // cubes between a and b
    static void printCubes(int a, int b)
    {
        // Find cube root of both a and b
        int acrt = (int)Math.cbrt(a);
        int bcrt = (int)Math.cbrt(b);
  
        // Print cubes between acrt and bcrt
        for (int i = acrt; i <= bcrt; i++)
            if (i * i * i >= a && i * i * i <= b)
                System.out.print(i * i * i + " ");
    }
  
    // Driver method
    public static void main(String[] args)
    {
        int a = 24, b = 576;
        System.out.println("Perfect cubes in given range:");
        printCubes(a, b);
    }
}

                    

Python3

# Python3 code for Efficient method  
# to print cubes between a and b
  
def cbrt(n) :
    return (int)( n ** (1. / 3))
  
# An efficient solution to print
# perfect cubes between a and b
def printCubes(a, b) :
      
    # Find cube root of 
    # both a and b
    acrt = cbrt(a)
    bcrt = cbrt(b)
  
    # Print cubes between acrt and bcrt
    for i in range(acrt, bcrt + 1) :
        if (i * i * i >= a and i * i * i <= b) :
            print(i * i * i, " ", end ="")
  
# Driver code
a = 24
b = 576
print("Perfect cubes in given range:")
printCubes(a, b)
  
  
# This code is contributed 
# by Nikita Tiwari.

                    

C#

// C# progroam for Efficient 
// method to print cubes 
// between a and b
using System;
  
class GFG
{
    // An efficient solution
    // to print perfect
    // cubes between a and b
    static void printCubes(int a, 
                           int b)
    {
        // Find cube root of
        // both a and b
        int acrt = (int)Math.Pow(a, 
                             (double)1 / 3);
        int bcrt = (int)Math.Pow(b, 
                             (double)1 / 3);
  
        // Print cubes between
        // acrt and bcrt
        for (int i = acrt; 
                 i <= bcrt; i++)
            if (i * i * i >= a && 
                i * i * i <= b)
                Console.Write(i * i *
                              i + " ");
    }
  
    // Driver Code
    static public void Main ()
    {
        int a = 24;
        int b = 576;
        Console.WriteLine("Perfect cubes "
                          "in given range:");
        printCubes(a, b);
    }
}
  
// This code is contributed 
// by ajit

                    

PHP

<?php
// Efficient method to print 
// cubes between a and b
  
// An efficient solution 
// to print perfect
// cubes between a and b
  
function printCubes($a, $b)
{
    // Find cube root 
    // of both a and b
    $acrt = (int)pow($a, 1 / 3);
    $bcrt = (int)pow($b, 1 / 3);
  
    // Print cubes between 
    // acrt and bcrt
    for ($i = $acrt; $i <= $bcrt; $i++)
        if ($i * $i * $i >= $a && 
            $i * $i * $i <= $b)
                echo $i * $i * $i , " ";
}
  
// Driver code
$a = 24; $b = 576;
echo "Perfect cubes in given range:\n",
                    printCubes($a, $b);
  
// This code is contributed by ajit
?>

                    

Javascript

<script>
    // Javascript progroam for Efficient
    // method to print cubes
    // between a and b
      
    // An efficient solution
    // to print perfect
    // cubes between a and b
    function printCubes(a, b)
    {
        // Find cube root of
        // both a and b
        let acrt = parseInt(Math.pow(a, 1 / 3), 10);
        let bcrt = parseInt(Math.pow(b, 1 / 3), 10);
   
        // Print cubes between
        // acrt and bcrt
        for (let i = acrt; i <= bcrt; i++)
            if (i * i * i >= a && i * i * i <= b)
                document.write((i * i * i) + " ");
    }
      
    let a = 24;
    let b = 576;
    document.write("Perfect cubes " + "in given range:" + "</br>");
    printCubes(a, b);
      
    // This code is contributed by rameshtravel07.
</script>

                    

Output: 
 

Perfect cubes in given range:
27 64 125 216 343 512


This article is contributed by Sahil Chhabra and improved by prophet1999.

 



Last Updated : 14 Sep, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads