Given a positive integer n. Consider a matrix of n rows and n columns, in which each element contain absolute difference of its row number and numbers. The task is to calculate sum of each element of the matrix.
Examples :
Input : n = 2
Output : 2
Matrix formed with n = 2 with given constraint:
0 1
1 0
Sum of matrix = 2.
Input : n = 3
Output : 8
Matrix formed with n = 3 with given constraint:
0 1 2
1 0 1
2 1 0
Sum of matrix = 8.
Method 1 (Brute Force): Simply construct a matrix of n rows and n columns and initialize each cell with absolute difference of its corresponding row number and column number. Now, find the sum of each cell.
Below is the implementation of above idea :
C++
#include<bits/stdc++.h>
using namespace std;
int findSum( int n)
{
int arr[n][n];
for ( int i = 0; i < n; i++)
for ( int j = 0; j < n; j++)
arr[i][j] = abs (i - j);
int sum = 0;
for ( int i = 0; i < n; i++)
for ( int j = 0; j < n; j++)
sum += arr[i][j];
return sum;
}
int main()
{
int n = 3;
cout << findSum(n) << endl;
return 0;
}
|
Java
import java.io.*;
public class GFG {
static int findSum( int n)
{
int [][]arr = new int [n][n];
for ( int i = 0 ; i < n; i++)
for ( int j = 0 ; j < n; j++)
arr[i][j] = Math.abs(i - j);
int sum = 0 ;
for ( int i = 0 ; i < n; i++)
for ( int j = 0 ; j < n; j++)
sum += arr[i][j];
return sum;
}
static public void main (String[] args)
{
int n = 3 ;
System.out.println(findSum(n));
}
}
|
Python3
def findSum(n):
arr = [[ 0 for x in range (n)]
for y in range (n)]
for i in range (n):
for j in range (n):
arr[i][j] = abs (i - j)
sum = 0
for i in range (n):
for j in range (n):
sum + = arr[i][j]
return sum
if __name__ = = "__main__" :
n = 3
print (findSum(n))
|
C#
using System;
public class GFG {
static int findSum( int n)
{
int [,]arr = new int [n, n];
for ( int i = 0; i < n; i++)
for ( int j = 0; j < n; j++)
arr[i,j ] = Math.Abs(i - j);
int sum = 0;
for ( int i = 0; i < n; i++)
for ( int j = 0; j < n; j++)
sum += arr[i, j];
return sum;
}
static public void Main(String[] args)
{
int n = 3;
Console.WriteLine(findSum(n));
}
}
|
PHP
<?php
function findSum( $n )
{
$arr = array ( array ());
for ( $i = 0; $i < $n ; $i ++)
for ( $j = 0; $j < $n ; $j ++)
$arr [ $i ][ $j ] = abs ( $i - $j );
$sum = 0;
for ( $i = 0; $i < $n ; $i ++)
for ( $j = 0; $j < $n ; $j ++)
$sum += $arr [ $i ][ $j ];
return $sum ;
}
$n = 3;
echo findSum( $n );
?>
|
Javascript
<script>
function findSum(n)
{
let arr= new Array(n);
for (let i = 0; i < n; i++)
{
arr[i] = new Array(n);
for (let j = 0; j < n; j++)
{
arr[i][j] = 0;
}
}
for (let i = 0; i < n; i++)
for (let j = 0; j < n; j++)
arr[i][j] = Math.abs(i - j);
let sum = 0;
for (let i = 0; i < n; i++)
for (let j = 0; j < n; j++)
sum += arr[i][j];
return sum;
}
let n = 3;
document.write(findSum(n));
</script>
|
Time Complexity: O(N2), as we are traversing the matrix using nested loops.
Auxiliary Space: O(N2), as we are using extra space for generating and storing the Matrix.
Method 2 (O(n)):
Consider n = 3, matrix formed will be:
0 1 2
1 0 1
2 1 0
Observe, the main diagonal is always 0 since all i are equal to j. The diagonal just above and just below will always be 1 because at each cell either i is 1 greater than j or j is 1 greater than i and so on.
Following the pattern we can see that the total sum of all the elements in the matrix will be, for each i from 0 to n, add i*(n-i)*2.
Below is the implementation of above idea :
C++
#include<bits/stdc++.h>
using namespace std;
int findSum( int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum += i*(n-i);
return 2*sum;
}
int main()
{
int n = 3;
cout << findSum(n) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG {
static int findSum( int n)
{
int sum = 0 ;
for ( int i = 0 ; i < n; i++)
sum += i * (n - i);
return 2 * sum;
}
static public void main(String[] args)
{
int n = 3 ;
System.out.println(findSum(n));
}
}
|
C#
using System;
class GFG {
static int findSum( int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum += i * (n - i);
return 2 * sum;
}
static public void Main(String[] args)
{
int n = 3;
Console.WriteLine(findSum(n));
}
}
|
Python3
def findSum(n):
sum = 0
for i in range (n):
sum + = i * (n - i)
return 2 * sum
n = 3
print (findSum(n))
|
PHP
<?php
function findSum( $n )
{
$sum = 0;
for ( $i = 0; $i < $n ; $i ++)
$sum += $i * ( $n - $i );
return 2 * $sum ;
}
$n = 3;
echo findSum( $n );
?>
|
Javascript
<script>
function findSum( n)
{
let sum = 0;
for (let i = 0; i < n; i++)
sum += i * (n - i);
return 2 * sum;
}
let n = 3;
document.write(findSum(n));
</script>
|
Time Complexity: O(N), as we are only using single loop to traverse.
Auxiliary Space: O(1), as we are not using any extra space.
Method 3 (Trick):
Consider n = 3, matrix formed will be:
0 1 2
1 0 1
2 1 0
So, sum = 1 + 1 + 1 + 1 + 2 + 2.
On Rearranging, 1 + 2 + 1 + 2 + 2 = 1 + 2 + 1 + 22.
So, in every case we can rearrange the sum of matrix so that the answer always will be sum of first n – 1 natural number and sum of square of first n – 1 natural number.
Sum of first n natural number = ((n)*(n + 1))/2.
Sum of first n natural number = ((n)*(n + 1)*(2*n + 1)/6.
Below is the implementation of above idea :
C++
#include<bits/stdc++.h>
using namespace std;
int findSum( int n)
{
n--;
int sum = 0;
sum += (n*(n+1))/2;
sum += (n*(n+1)*(2*n + 1))/6;
return sum;
}
int main()
{
int n = 3;
cout << findSum(n) << endl;
return 0;
}
|
Java
import java.io.*;
public class GFG {
static int findSum( int n)
{
n--;
int sum = 0 ;
sum += (n * (n + 1 )) / 2 ;
sum += (n * (n + 1 ) * ( 2 * n + 1 )) / 6 ;
return sum;
}
static public void main (String[] args)
{
int n = 3 ;
System.out.println(findSum(n));
}
}
|
Python3
def findSum(n):
n - = 1
sum = 0
sum + = (n * (n + 1 )) / 2
sum + = (n * (n + 1 ) * ( 2 * n + 1 )) / 6
return int ( sum )
n = 3
print (findSum(n))
|
C#
using System;
public class GFG {
static int findSum( int n)
{
n--;
int sum = 0;
sum += (n * (n + 1)) / 2;
sum += (n * (n + 1) * (2 * n + 1)) / 6;
return sum;
}
static public void Main(String[] args)
{
int n = 3;
Console.WriteLine(findSum(n));
}
}
|
PHP
<?php
function findSum( $n )
{
$n --;
$sum = 0;
$sum += ( $n * ( $n + 1)) / 2;
$sum += ( $n * ( $n + 1) *
(2 * $n + 1)) / 6;
return $sum ;
}
$n = 3;
echo findSum( $n ) ;
?>
|
Javascript
<script>
function findSum( n)
{
n--;
let sum = 0;
sum += (n * (n + 1)) / 2;
sum += (n * (n + 1) * (2 * n + 1)) / 6;
return sum;
}
let n = 3;
document.write(findSum(n));
</script>
|
Time Complexity: O(1), as we are not using any loops.
Auxiliary Space: O(1), as we are not using any extra space.
This article is contributed by
Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.