Split an array into groups of 3 such that X3 is divisible by X2 and X2 is divisible by X1

Given an array A containing N elements (N is divisible by 3), the task is to split the numbers into groups of 3, let the group have 3 elements X1, X2, and X3, the following conditions should be true for the group:

• X1, X2, and X3 are pairwise distinct
• X3 is divisible by X2
• X2 is divisible by X1

Print -1 if splitting the array into N/3 Such groups is not possible.
Note: Elements of the array will lie in the range 1 to 6 (inclusive).
Examples:

```Input : N = 6, A[] = {2, 2, 1, 1, 4, 6}
Output : 1 2 4
1 2 6
Explanation:
Group 1: Pairs = {(1,2), (2,4), (1,4)}
All pairs are distinct,
4 is divisible by 2 and 2 by 1.
Group 2: Pairs = {(1,2), (2,6), (1,6)}
All pairs are distinct,
6 is divisible by 2 and 2 by 1.

Input : N = 6, A[] = {1, 1, 1, 6, 6, 3}
Output : -1```

Approach:
Since the values of the array are between 1 and 6, only the following kind of groups can be made:

• 1 2 4
• 1 2 6
• 1 3 6

Start of by counting the frequency of each element. Since 1 is common across all groups, it must occur exactly N/3 times. 4 can be put into only the first kind of group, which always contains 2. So the count of 2 should be greater than the count of 4. The remaining 2 can be put in only the second kind of groups. Now, the remaining numbers have to be put in the third kind of groups. If at any point the count is less than required, the answer would be -1.
Below is the implementation of the above approach:

C++

 `// C++ program to split array in groups of 3`   `#include ` `using` `namespace` `std;`   `// Function to print the groups after` `// splitting array in groups of 3` `void` `printGroups(``int` `n, ``int` `a[])` `{` `    ``int` `ct[7] = { 0 }, grps = n / 3, i;`   `    ``// Count occurrence of each element` `    ``for` `(i = 0; i < n; i++)` `        ``ct[a[i]]++;`   `    ``// Check if it is possible to form the groups` `    ``if` `(ct[1] != grps || (ct[4] + ct[6]) != grps ` `              ``|| (ct[2] + ct[3]) != grps || ct[4] > ct[2]) ` `    ``{` `        ``cout << -1;` `        ``return``;` `    ``}`   `    ``// Print groups that end at 4` `    ``for` `(i = 0; i < ct[4]; i++)` `        ``cout << ``"1 2 4\n"``;`   `    ``// Print groups that end at 6, with 2` `    ``// in the middle` `    ``for` `(i = 0; i < ct[2] - ct[4]; i++)` `        ``cout << ``"1 2 6\n"``;`   `    ``// Print groups that have a 3 in the middle` `    ``for` `(i = 0; i < ct[3]; i++)` `        ``cout << ``"1 3 6\n"``;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `n = 6;` `    ``int` `a[n] = { 2, 2, 1, 1, 4, 6 };`   `    ``printGroups(n, a);`   `    ``return` `0;` `}`

Java

 `// Java program to split array in groups of 3` `class` `GFG ` `{`   `    ``// Function to print the groups after` `    ``// splitting array in groups of 3` `    ``static` `void` `printGroups(``int` `n, ``int` `a[]) ` `    ``{` `        ``int` `ct[] = ``new` `int``[``7``], grps = n / ``3``, i;`   `        ``// Count occurrence of each element` `        ``for` `(i = ``0``; i < n; i++)` `        ``{` `            ``ct[a[i]]++;` `        ``}`   `        ``// Check if it is possible to form the groups` `        ``if` `(ct[``1``] != grps || (ct[``4``] + ct[``6``]) != grps` `            ``|| (ct[``2``] + ct[``3``]) != grps || ct[``4``] > ct[``2``]) ` `        ``{` `            ``System.out.print(-``1``);` `            ``return``;` `        ``}`   `        ``// Print groups that end at 4` `        ``for` `(i = ``0``; i < ct[``4``]; i++) ` `        ``{` `            ``System.out.print(``"1 2 4\n"``);` `        ``}`   `        ``// Print groups that end at 6, with 2` `        ``// in the middle` `        ``for` `(i = ``0``; i < ct[``2``] - ct[``4``]; i++) ` `        ``{` `            ``System.out.print(``"1 2 6\n"``);` `        ``}` `        `  `        ``// Print groups that have a 3 in the middle` `        ``for` `(i = ``0``; i < ct[``3``]; i++)` `        ``{` `            ``System.out.print(``"1 3 6\n"``);` `        ``}` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `main(String[] args) ` `    ``{` `        ``int` `n = ``6``;` `        ``int` `a[] = {``2``, ``2``, ``1``, ``1``, ``4``, ``6``};`   `        ``printGroups(n, a);` `    ``}` `}`   `/* This code contributed by PrinciRaj1992 */`

Python3

 `# Python3 program to split array in ` `# groups of 3`   `# Function to print the groups after` `# splitting array in groups of 3` `def` `printGroups(n, a):`   `    ``ct ``=` `[``0` `for` `i ``in` `range``(``7``)]` `    ``grps ``=` `n ``/``/` `3` `    ``i ``=` `0`   `    ``# Count occurrence of each element` `    ``for` `i ``in` `range``(n):` `        ``ct[a[i]] ``+``=` `1`   `    ``# Check if it is possible to ` `    ``# form the groups` `    ``if` `(ct[``1``] !``=` `grps ``or` `(ct[``4``] ``+` `ct[``6``]) !``=` `grps ``or` `       ``(ct[``2``] ``+` `ct[``3``]) !``=` `grps ``or` `ct[``4``] > ct[``2``]):` `        ``print``(``-``1``)` `        ``return`   `    ``# Print groups that end at 4` `    ``for` `i ``in` `range``(ct[``4``]):` `        ``print``(``"1 2 4"``)`   `    ``# Print groups that end at 6, with 2` `    ``# in the middle` `    ``for` `i ``in` `range``(ct[``2``] ``-` `ct[``4``]):` `        ``print``(``"1 2 6"``)`   `    ``# Print groups that have a 3 in the middle` `    ``for` `i ``in` `range``(ct[``3``]):` `        ``print``(``"1 3 6"``)`   `# Driver Code` `n ``=` `6` `a ``=` `[``2``, ``2``, ``1``, ``1``, ``4``, ``6` `]`   `printGroups(n, a)`   `# This code is contributed` `# by Mohit Kumar`

C#

 `// C# program to split array in groups of 3` `using` `System;`   `class` `GFG ` `{`   `    ``// Function to print the groups after` `    ``// splitting array in groups of 3` `    ``static` `void` `printGroups(``int` `n, ``int` `[]a) ` `    ``{` `        ``int` `[]ct = ``new` `int``[7];` `        ``int` `grps = n / 3, i;`   `        ``// Count occurrence of each element` `        ``for` `(i = 0; i < n; i++)` `        ``{` `            ``ct[a[i]]++;` `        ``}`   `        ``// Check if it is possible to form the groups` `        ``if` `(ct[1] != grps || (ct[4] + ct[6]) != grps || ` `           ``(ct[2] + ct[3]) != grps || ct[4] > ct[2]) ` `        ``{` `            ``Console.Write(-1);` `            ``return``;` `        ``}`   `        ``// Print groups that end at 4` `        ``for` `(i = 0; i < ct[4]; i++) ` `        ``{` `            ``Console.Write(``"1 2 4\n"``);` `        ``}`   `        ``// Print groups that end at 6, with 2` `        ``// in the middle` `        ``for` `(i = 0; i < ct[2] - ct[4]; i++) ` `        ``{` `            ``Console.Write(``"1 2 6\n"``);` `        ``}` `        `  `        ``// Print groups that have a 3 in the middle` `        ``for` `(i = 0; i < ct[3]; i++)` `        ``{` `            ``Console.Write(``"1 3 6\n"``);` `        ``}` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `Main() ` `    ``{` `        ``int` `n = 6;` `        ``int` `[]a = {2, 2, 1, 1, 4, 6};`   `        ``printGroups(n, a);` `    ``}` `}`   `// This code is contributed ` `// by Akanksha Rai`

PHP

 ` ``\$ct``[2]) ` `    ``{` `        ``echo` `-1;` `        ``return``;` `    ``}`   `    ``// Print groups that end at 4` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$ct``[4]; ``\$i``++)` `        ``echo` `"1 2 4\n"``;`   `    ``// Print groups that end at 6, with 2` `    ``// in the middle` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$ct``[2] - ``\$ct``[4]; ``\$i``++)` `        ``echo` `"1 2 6\n"``;`   `    ``// Print groups that have a 3 in the middle` `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$ct``[3]; ``\$i``++)` `        ``echo` `"1 3 6\n"``;` `}`   `// Driver Code` `\$n` `= 6;` `\$a` `= ``array``(2, 2, 1, 1, 4, 6);`   `printGroups(``\$n``, ``\$a``);`   `// This code is contributed ` `// by Akanksha Rai` `?>`

Javascript

 ``

Output:

```1 2 4
1 2 6```

Time Complexity: O(N)
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next