Smallest sum contiguous subarray
Given an array containing n integers. The problem is to find the sum of the elements of the contiguous subarray having the smallest(minimum) sum.
Examples:
Input : arr[] = {3, -4, 2, -3, -1, 7, -5} Output : -6 Subarray is {-4, 2, -3, -1} = -6 Input : arr = {2, 6, 8, 1, 4} Output : 1
Naive Approach: Consider all the contiguous subarrays of different sizes and find their sum. The subarray having the smallest(minimum) sum is the required answer.
Efficient Approach: It is a variation to the problem of finding the largest sum contiguous subarray based on the idea of Kadane’s algorithm.
Algorithm:
smallestSumSubarr(arr, n) Initialize min_ending_here = INT_MAX Initialize min_so_far = INT_MAX for i = 0 to n-1 if min_ending_here > 0 min_ending_here = arr[i] else min_ending_here += arr[i] min_so_far = min(min_so_far, min_ending_here) return min_so_far
C++
// C++ implementation to find the smallest sum // contiguous subarray #include <bits/stdc++.h> using namespace std; // function to find the smallest sum contiguous subarray int smallestSumSubarr( int arr[], int n) { // to store the minimum value that is ending // up to the current index int min_ending_here = INT_MAX; // to store the minimum value encountered so far int min_so_far = INT_MAX; // traverse the array elements for ( int i=0; i<n; i++) { // if min_ending_here > 0, then it could not possibly // contribute to the minimum sum further if (min_ending_here > 0) min_ending_here = arr[i]; // else add the value arr[i] to min_ending_here else min_ending_here += arr[i]; // update min_so_far min_so_far = min(min_so_far, min_ending_here); } // required smallest sum contiguous subarray value return min_so_far; } // Driver program to test above int main() { int arr[] = {3, -4, 2, -3, -1, 7, -5}; int n = sizeof (arr) / sizeof (arr[0]); cout << "Smallest sum: " << smallestSumSubarr(arr, n); return 0; } |
Java
// Java implementation to find the smallest sum // contiguous subarray class GFG { // function to find the smallest sum contiguous // subarray static int smallestSumSubarr( int arr[], int n) { // to store the minimum value that is // ending up to the current index int min_ending_here = 2147483647 ; // to store the minimum value encountered // so far int min_so_far = 2147483647 ; // traverse the array elements for ( int i = 0 ; i < n; i++) { // if min_ending_here > 0, then it could // not possibly contribute to the // minimum sum further if (min_ending_here > 0 ) min_ending_here = arr[i]; // else add the value arr[i] to // min_ending_here else min_ending_here += arr[i]; // update min_so_far min_so_far = Math.min(min_so_far, min_ending_here); } // required smallest sum contiguous // subarray value return min_so_far; } // Driver method public static void main(String[] args) { int arr[] = { 3 , - 4 , 2 , - 3 , - 1 , 7 , - 5 }; int n = arr.length; System.out.print( "Smallest sum: " + smallestSumSubarr(arr, n)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python program to find the smallest sum # contiguous subarray maxsize = int ( 1e9 + 7 ) # function to find the smallest sum # contiguous subarray def smallestSumSubarr(arr, n): # to store the minimum value that is ending # up to the current index min_ending_here = maxsize # to store the minimum value encountered so far min_so_far = maxsize # traverse the array elements for i in range (n): # if min_ending_here > 0, then it could not possibly # contribute to the minimum sum further if (min_ending_here > 0 ): min_ending_here = arr[i] # else add the value arr[i] to min_ending_here else : min_ending_here + = arr[i] # update min_so_far min_so_far = min (min_so_far, min_ending_here) # required smallest sum contiguous subarray value return min_so_far # Driver code arr = [ 3 , - 4 , 2 , - 3 , - 1 , 7 , - 5 ] n = len (arr) print ( "Smallest sum: " , smallestSumSubarr(arr, n)) # This code is contributed by Sachin Bisht |
C#
// C# implementation to find the // smallest sum contiguous subarray using System; class GFG { // function to find the smallest sum // contiguous subarray static int smallestSumSubarr( int [] arr, int n) { // to store the minimum value that is // ending up to the current index int min_ending_here = 2147483647; // to store the minimum value encountered // so far int min_so_far = 2147483647; // traverse the array elements for ( int i = 0; i < n; i++) { // if min_ending_here > 0, then it could // not possibly contribute to the // minimum sum further if (min_ending_here > 0) min_ending_here = arr[i]; // else add the value arr[i] to // min_ending_here else min_ending_here += arr[i]; // update min_so_far min_so_far = Math.Min(min_so_far, min_ending_here); } // required smallest sum contiguous // subarray value return min_so_far; } // Driver method public static void Main() { int [] arr = { 3, -4, 2, -3, -1, 7, -5 }; int n = arr.Length; Console.Write( "Smallest sum: " + smallestSumSubarr(arr, n)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP implementation to find the // smallest sum contiguous subarray // function to find the smallest // sum contiguous subarray function smallestSumSubarr( $arr , $n ) { // to store the minimum // value that is ending // up to the current index $min_ending_here = 999999; // to store the minimum value // encountered so far $min_so_far = 999999; // traverse the array elements for ( $i = 0; $i < $n ; $i ++) { // if min_ending_here > 0, // then it could not possibly // contribute to the minimum // sum further if ( $min_ending_here > 0) $min_ending_here = $arr [ $i ]; // else add the value arr[i] // to min_ending_here else $min_ending_here += $arr [ $i ]; // update min_so_far $min_so_far = min( $min_so_far , $min_ending_here ); } // required smallest sum // contiguous subarray value return $min_so_far ; } // Driver Code $arr = array (3, -4, 2, -3, -1, 7, -5); $n = count ( $arr ) ; echo "Smallest sum: " .smallestSumSubarr( $arr , $n ); // This code is contributed by Sam007 ?> |
Javascript
<script> // JavaScript implementation to find the // smallest sum contiguous subarray // function to find the smallest sum // contiguous subarray function smallestSumSubarr(arr, n) { // to store the minimum value that is // ending up to the current index let min_ending_here = 2147483647; // to store the minimum value encountered // so far let min_so_far = 2147483647; // traverse the array elements for (let i = 0; i < n; i++) { // if min_ending_here > 0, then it could // not possibly contribute to the // minimum sum further if (min_ending_here > 0) min_ending_here = arr[i]; // else add the value arr[i] to // min_ending_here else min_ending_here += arr[i]; // update min_so_far min_so_far = Math.min(min_so_far, min_ending_here); } // required smallest sum contiguous // subarray value return min_so_far; } let arr = [ 3, -4, 2, -3, -1, 7, -5 ]; let n = arr.length; document.write( "Smallest sum: " + smallestSumSubarr(arr, n)); </script> |
Output:
Smallest sum: -6
Time Complexity: O(n)
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.