Size of The Subarray With Maximum Sum

An array is given, find length of the subarray having maximum sum.

Examples :

Input :  a[] = {1, -2, 1, 1, -2, 1}
Output : Length of the subarray is 2
Explanation: Subarray with consecutive elements 
and maximum sum will be {1, 1}. So length is 2

Input : ar[] = { -2, -3, 4, -1, -2, 1, 5, -3 }
Output : Length of the subarray is 5
Explanation: Subarray with consecutive elements 
and maximum sum will be {4, -1, -2, 1, 5}. 


This problem is mainly a variation of Largest Sum Contiguous Subarray Problem.

The idea is to update starting index whenever sum ending here becomes less than 0.

C++

// C++ program to print length of the largest 
// contiguous array sum
#include<iostream>
#include<climits>
using namespace std;
  
int maxSubArraySum(int a[], int size)
{
    int max_so_far = INT_MIN, max_ending_here = 0,
       start =0, end = 0, s=0;
  
    for (int i=0; i< size; i++ )
    {
        max_ending_here += a[i];
  
        if (max_so_far < max_ending_here)
        {
            max_so_far = max_ending_here;
            start = s;
            end = i;
        }
  
        if (max_ending_here < 0)
        {
            max_ending_here = 0;
            s = i + 1;
        }
    }
      
    return (end - start + 1);
}
  
/*Driver program to test maxSubArraySum*/
int main()
{
    int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
    int n = sizeof(a)/sizeof(a[0]);
    cout << maxSubArraySum(a, n);
    return 0;
}

Java

// Java program to print length of the largest 
// contiguous array sum
class GFG {
  
    static int maxSubArraySum(int a[], int size)
    {
        int max_so_far = Integer.MIN_VALUE,
        max_ending_here = 0,start = 0,
        end = 0, s = 0;
  
        for (int i = 0; i < size; i++) 
        {
            max_ending_here += a[i];
  
            if (max_so_far < max_ending_here) 
            {
                max_so_far = max_ending_here;
                start = s;
                end = i;
            }
  
            if (max_ending_here < 0
            {
                max_ending_here = 0;
                s = i + 1;
            }
        }
        return (end - start + 1);
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
        int n = a.length;
        System.out.println(maxSubArraySum(a, n));
    }
}

Python3

# Python program to print largest contiguous array sum
  
from sys import maxsize
  
# Function to find the maximum contiguous subarray
# and print its starting and end index
def maxSubArraySum(a,size):
  
    max_so_far = -maxsize - 1
    max_ending_here = 0
    start = 0
    end = 0
    s = 0
  
    for i in range(0,size):
  
        max_ending_here += a[i]
  
        if max_so_far < max_ending_here:
            max_so_far = max_ending_here
            start = s
            end = i
  
        if max_ending_here < 0:
            max_ending_here = 0
            s = i+1
  
    return (end - start + 1)
  
# Driver program to test maxSubArraySum
a = [-2, -3, 4, -1, -2, 1, 5, -3]
print(maxSubArraySum(a,len(a)))

C#

// C# program to print length of the 
// largest contiguous array sum
using System;
  
class GFG {
  
    // Function to find maximum subarray sum
    static int maxSubArraySum(int []a, int size)
    {
        int max_so_far = int.MinValue,
        max_ending_here = 0,start = 0,
        end = 0, s = 0;
  
        for (int i = 0; i < size; i++) 
        {
            max_ending_here += a[i];
  
            if (max_so_far < max_ending_here) 
            {
                max_so_far = max_ending_here;
                start = s;
                end = i;
            }
  
            if (max_ending_here < 0) 
            {
                max_ending_here = 0;
                s = i + 1;
            }
        }
        return (end - start + 1);
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        int []a = {-2, -3, 4, -1, -2, 1, 5, -3};
        int n = a.Length;
        Console.Write(maxSubArraySum(a, n));
    }
}
  
// This code is contributed by parashar...

PHP

<?php
// PHP program for Bresenham’s 
// Line Generation Assumptions :
  
// 1) Line is drawn from
// left to right.
// 2) x1 < x2 and y1 < y2
// 3) Slope of the line is 
// between 0 and 1.
// We draw a line from lower 
// left to upper right.
  
// function for line generation
function bresenham($x1, $y1, $x2, $y2)
{
$m_new = 2 * ($y2 - $y1);
$slope_error_new = $m_new - ($x2 - $x1);
for ($x = $x1, $y = $y1; $x <= $x2; $x++)
{
    echo "(" ,$x , "," , $y, ")\n";
  
    // Add slope to increment
    // angle formed
    $slope_error_new += $m_new;
  
    // Slope error reached limit, 
    // time to increment y and 
    // update slope error.
    if ($slope_error_new >= 0)
    {
        $y++;
        $slope_error_new -= 2 * ($x2 - $x1);
    }
}
}
  
// Driver Code
$x1 = 3; $y1 = 2; $x2 = 15; $y2 = 5;
bresenham($x1, $y1, $x2, $y2);
  
// This code is contributed by nitin mittal.
?>

Output :

5


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.


Improved By : parashar, vt_m




Article Tags :

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

Recommended Posts:



2 Average Difficulty : 2/5.0
Based on 13 vote(s)






User Actions