# Size of The Subarray With Maximum Sum

• Difficulty Level : Easy
• Last Updated : 05 Apr, 2021

An array is given, find length of the subarray having maximum sum.

Examples :

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

```Input :  a[] = {1, -2, 1, 1, -2, 1}
Output : Length of the subarray is 2
Explanation: Subarray with consecutive elements
and maximum sum will be {1, 1}. So length is 2

Input : ar[] = { -2, -3, 4, -1, -2, 1, 5, -3 }
Output : Length of the subarray is 5
Explanation: Subarray with consecutive elements
and maximum sum will be {4, -1, -2, 1, 5}. ```

This problem is mainly a variation of Largest Sum Contiguous Subarray Problem.
The idea is to update starting index whenever sum ending here becomes less than 0.

## C++

 `// C++ program to print length of the largest``// contiguous array sum``#include``using` `namespace` `std;` `int` `maxSubArraySum(``int` `a[], ``int` `size)``{``    ``int` `max_so_far = INT_MIN, max_ending_here = 0,``       ``start =0, end = 0, s=0;` `    ``for` `(``int` `i=0; i< size; i++ )``    ``{``        ``max_ending_here += a[i];` `        ``if` `(max_so_far < max_ending_here)``        ``{``            ``max_so_far = max_ending_here;``            ``start = s;``            ``end = i;``        ``}` `        ``if` `(max_ending_here < 0)``        ``{``            ``max_ending_here = 0;``            ``s = i + 1;``        ``}``    ``}``    ` `    ``return` `(end - start + 1);``}` `/*Driver program to test maxSubArraySum*/``int` `main()``{``    ``int` `a[] = {-2, -3, 4, -1, -2, 1, 5, -3};``    ``int` `n = ``sizeof``(a)/``sizeof``(a);``    ``cout << maxSubArraySum(a, n);``    ``return` `0;``}`

## Java

 `// Java program to print length of the largest``// contiguous array sum``class` `GFG {` `    ``static` `int` `maxSubArraySum(``int` `a[], ``int` `size)``    ``{``        ``int` `max_so_far = Integer.MIN_VALUE,``        ``max_ending_here = ``0``,start = ``0``,``        ``end = ``0``, s = ``0``;` `        ``for` `(``int` `i = ``0``; i < size; i++)``        ``{``            ``max_ending_here += a[i];` `            ``if` `(max_so_far < max_ending_here)``            ``{``                ``max_so_far = max_ending_here;``                ``start = s;``                ``end = i;``            ``}` `            ``if` `(max_ending_here < ``0``)``            ``{``                ``max_ending_here = ``0``;``                ``s = i + ``1``;``            ``}``        ``}``        ``return` `(end - start + ``1``);``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `a[] = { -``2``, -``3``, ``4``, -``1``, -``2``, ``1``, ``5``, -``3` `};``        ``int` `n = a.length;``        ``System.out.println(maxSubArraySum(a, n));``    ``}``}`

## Python3

 `# Python3 program to print largest contiguous array sum` `from` `sys ``import` `maxsize` `# Function to find the maximum contiguous subarray``# and print its starting and end index``def` `maxSubArraySum(a,size):` `    ``max_so_far ``=` `-``maxsize ``-` `1``    ``max_ending_here ``=` `0``    ``start ``=` `0``    ``end ``=` `0``    ``s ``=` `0` `    ``for` `i ``in` `range``(``0``,size):` `        ``max_ending_here ``+``=` `a[i]` `        ``if` `max_so_far < max_ending_here:``            ``max_so_far ``=` `max_ending_here``            ``start ``=` `s``            ``end ``=` `i` `        ``if` `max_ending_here < ``0``:``            ``max_ending_here ``=` `0``            ``s ``=` `i``+``1` `    ``return` `(end ``-` `start ``+` `1``)` `# Driver program to test maxSubArraySum``a ``=` `[``-``2``, ``-``3``, ``4``, ``-``1``, ``-``2``, ``1``, ``5``, ``-``3``]``print``(maxSubArraySum(a,``len``(a)))`

## C#

 `// C# program to print length of the``// largest contiguous array sum``using` `System;` `class` `GFG {` `    ``// Function to find maximum subarray sum``    ``static` `int` `maxSubArraySum(``int` `[]a, ``int` `size)``    ``{``        ``int` `max_so_far = ``int``.MinValue,``        ``max_ending_here = 0,start = 0,``        ``end = 0, s = 0;` `        ``for` `(``int` `i = 0; i < size; i++)``        ``{``            ``max_ending_here += a[i];` `            ``if` `(max_so_far < max_ending_here)``            ``{``                ``max_so_far = max_ending_here;``                ``start = s;``                ``end = i;``            ``}` `            ``if` `(max_ending_here < 0)``            ``{``                ``max_ending_here = 0;``                ``s = i + 1;``            ``}``        ``}``        ``return` `(end - start + 1);``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``int` `[]a = {-2, -3, 4, -1, -2, 1, 5, -3};``        ``int` `n = a.Length;``        ``Console.Write(maxSubArraySum(a, n));``    ``}``}` `// This code is contributed by parashar...`

## PHP

 `= 0)``    ``{``        ``\$y``++;``        ``\$slope_error_new` `-= 2 * (``\$x2` `- ``\$x1``);``    ``}``}``}` `// Driver Code``\$x1` `= 3; ``\$y1` `= 2; ``\$x2` `= 15; ``\$y2` `= 5;``bresenham(``\$x1``, ``\$y1``, ``\$x2``, ``\$y2``);` `// This code is contributed by nitin mittal.``?>`

## Javascript

 ``
Output :
`5`

My Personal Notes arrow_drop_up