# Size of The Subarray With Maximum Sum

An array is given, find length of the subarray having maximum sum.

Examples :

```Input :  a[] = {1, -2, 1, 1, -2, 1}
Output : Length of the subarray is 2
Explanation: Subarray with consecutive elements
and maximum sum will be {1, 1}. So length is 2

Input : ar[] = { -2, -3, 4, -1, -2, 1, 5, -3 }
Output : Length of the subarray is 5
Explanation: Subarray with consecutive elements
and maximum sum will be {4, -1, -2, 1, 5}.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

This problem is mainly a variation of Largest Sum Contiguous Subarray Problem.

The idea is to update starting index whenever sum ending here becomes less than 0.

## C++

 `// C++ program to print length of the largest  ` `// contiguous array sum ` `#include ` `using` `namespace` `std; ` ` `  `int` `maxSubArraySum(``int` `a[], ``int` `size) ` `{ ` `    ``int` `max_so_far = INT_MIN, max_ending_here = 0, ` `       ``start =0, end = 0, s=0; ` ` `  `    ``for` `(``int` `i=0; i< size; i++ ) ` `    ``{ ` `        ``max_ending_here += a[i]; ` ` `  `        ``if` `(max_so_far < max_ending_here) ` `        ``{ ` `            ``max_so_far = max_ending_here; ` `            ``start = s; ` `            ``end = i; ` `        ``} ` ` `  `        ``if` `(max_ending_here < 0) ` `        ``{ ` `            ``max_ending_here = 0; ` `            ``s = i + 1; ` `        ``} ` `    ``} ` `     `  `    ``return` `(end - start + 1); ` `} ` ` `  `/*Driver program to test maxSubArraySum*/` `int` `main() ` `{ ` `    ``int` `a[] = {-2, -3, 4, -1, -2, 1, 5, -3}; ` `    ``int` `n = ``sizeof``(a)/``sizeof``(a); ` `    ``cout << maxSubArraySum(a, n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to print length of the largest  ` `// contiguous array sum ` `class` `GFG { ` ` `  `    ``static` `int` `maxSubArraySum(``int` `a[], ``int` `size) ` `    ``{ ` `        ``int` `max_so_far = Integer.MIN_VALUE, ` `        ``max_ending_here = ``0``,start = ``0``, ` `        ``end = ``0``, s = ``0``; ` ` `  `        ``for` `(``int` `i = ``0``; i < size; i++)  ` `        ``{ ` `            ``max_ending_here += a[i]; ` ` `  `            ``if` `(max_so_far < max_ending_here)  ` `            ``{ ` `                ``max_so_far = max_ending_here; ` `                ``start = s; ` `                ``end = i; ` `            ``} ` ` `  `            ``if` `(max_ending_here < ``0``)  ` `            ``{ ` `                ``max_ending_here = ``0``; ` `                ``s = i + ``1``; ` `            ``} ` `        ``} ` `        ``return` `(end - start + ``1``); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `a[] = { -``2``, -``3``, ``4``, -``1``, -``2``, ``1``, ``5``, -``3` `}; ` `        ``int` `n = a.length; ` `        ``System.out.println(maxSubArraySum(a, n)); ` `    ``} ` `} `

## Python3

 `# Python program to print largest contiguous array sum ` ` `  `from` `sys ``import` `maxsize ` ` `  `# Function to find the maximum contiguous subarray ` `# and print its starting and end index ` `def` `maxSubArraySum(a,size): ` ` `  `    ``max_so_far ``=` `-``maxsize ``-` `1` `    ``max_ending_here ``=` `0` `    ``start ``=` `0` `    ``end ``=` `0` `    ``s ``=` `0` ` `  `    ``for` `i ``in` `range``(``0``,size): ` ` `  `        ``max_ending_here ``+``=` `a[i] ` ` `  `        ``if` `max_so_far < max_ending_here: ` `            ``max_so_far ``=` `max_ending_here ` `            ``start ``=` `s ` `            ``end ``=` `i ` ` `  `        ``if` `max_ending_here < ``0``: ` `            ``max_ending_here ``=` `0` `            ``s ``=` `i``+``1` ` `  `    ``return` `(end ``-` `start ``+` `1``) ` ` `  `# Driver program to test maxSubArraySum ` `a ``=` `[``-``2``, ``-``3``, ``4``, ``-``1``, ``-``2``, ``1``, ``5``, ``-``3``] ` `print``(maxSubArraySum(a,``len``(a))) `

## C#

 `// C# program to print length of the  ` `// largest contiguous array sum ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Function to find maximum subarray sum ` `    ``static` `int` `maxSubArraySum(``int` `[]a, ``int` `size) ` `    ``{ ` `        ``int` `max_so_far = ``int``.MinValue, ` `        ``max_ending_here = 0,start = 0, ` `        ``end = 0, s = 0; ` ` `  `        ``for` `(``int` `i = 0; i < size; i++)  ` `        ``{ ` `            ``max_ending_here += a[i]; ` ` `  `            ``if` `(max_so_far < max_ending_here)  ` `            ``{ ` `                ``max_so_far = max_ending_here; ` `                ``start = s; ` `                ``end = i; ` `            ``} ` ` `  `            ``if` `(max_ending_here < 0)  ` `            ``{ ` `                ``max_ending_here = 0; ` `                ``s = i + 1; ` `            ``} ` `        ``} ` `        ``return` `(end - start + 1); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main(String[] args) ` `    ``{ ` `        ``int` `[]a = {-2, -3, 4, -1, -2, 1, 5, -3}; ` `        ``int` `n = a.Length; ` `        ``Console.Write(maxSubArraySum(a, n)); ` `    ``} ` `} ` ` `  `// This code is contributed by parashar... `

## PHP

 `= 0) ` `    ``{ ` `        ``\$y``++; ` `        ``\$slope_error_new` `-= 2 * (``\$x2` `- ``\$x1``); ` `    ``} ` `} ` `} ` ` `  `// Driver Code ` `\$x1` `= 3; ``\$y1` `= 2; ``\$x2` `= 15; ``\$y2` `= 5; ` `bresenham(``\$x1``, ``\$y1``, ``\$x2``, ``\$y2``); ` ` `  `// This code is contributed by nitin mittal. ` `?> `

Output :

```5
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : parashar, vt_m