We know the Pascal’s Identity very well, i.e. **n _{c}_{r} = n-1_{c}_{r} + n-1_{c}_{r-1}**

A curious reader might have observed that Pascal’s Identity is instrumental in establishing recursive relation in solving binomial coefficients. It is quite easy to prove the above identity using simple algebra. Here I’m trying to explain it’s practical significance.

Recap from counting techniques, **n _{c}_{r} **means selecting

**elements from**

*r***elements. Let us pick a special element**

*n***from these**

*k***elements, we left with**

*n***(**elements.

*n – 1*)We can group these ** r** elements selection

**n**into two categories,

_{c}_{r}1) group that contains the element ** k**.

2) group that *does not* contain the element ** k**.

Consider first group, the special element ** k** is in all

**selections. Since**

*r***is part of**

*k***elements, we need to choose (**

*r***) elements from remaining (**

*r – 1***) elements, there are**

*n – 1***n-1**

_{c}_{r-1}ways.

Consider second group, the special element ** k** is not there in all

**selections, i.e. we will have to select all the**

*r***elements from available (**

*r***) elements (as we must exclude element**

*n – 1***from**

*k***). This can be done in**

*n***n-1**ways.

_{c}_{r}Now it is evident that sum of these two is selecting ** r** elements from

**elements.**

*n*There can be many ways to prove the above fact. There might be many applications of Pascal’s Identity. Please share your knowledge.

— **Venki**. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**