# Shortest distance between two cells in a matrix or grid

Given a matrix of N*M order. Find the shortest distance from a source cell to a destination cell, traversing through limited cells only. Also you can move only up, down, left and right. If found output the distance else -1.
s represents ‘source’
d represents ‘destination’
* represents cell you can travel
0 represents cell you can not travel
This problem is meant for single source and destination.

Examples:

```Input : {'0', '*', '0', 's'},
{'*', '0', '*', '*'},
{'0', '*', '*', '*'},
{'d', '*', '*', '*'}
Output : 6

Input :  {'0', '*', '0', 's'},
{'*', '0', '*', '*'},
{'0', '*', '*', '*'},
{'d', '0', '0', '0'}
Output :  -1
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to BFS (breadth first search) on matrix cells. Note that we can always use BFS to find shortest path if graph is unweighted.

1. Store each cell as a node with their row, column values and distance from source cell.
2. Start BFS with source cell.
3. Make a visited array with all having “false” values except ‘0’cells which are assigned “true” values as they can not be traversed.
4. Keep updating distance from source value in each move.
5. Return distance when destination is met, else return -1 (no path exists in between source and destination).

 `// C++ Code implementation for above problem ` `#include ` `using` `namespace` `std; ` ` `  `#define N 4 ` `#define M 4 ` ` `  `// QItem for current location and distance ` `// from source location ` `class` `QItem { ` `public``: ` `    ``int` `row; ` `    ``int` `col; ` `    ``int` `dist; ` `    ``QItem(``int` `x, ``int` `y, ``int` `w) ` `        ``: row(x), col(y), dist(w) ` `    ``{ ` `    ``} ` `}; ` ` `  `int` `minDistance(``char` `grid[N][M]) ` `{ ` `    ``QItem source(0, 0, 0); ` ` `  `    ``// To keep track of visited QItems. Marking ` `    ``// blocked cells as visited. ` `    ``bool` `visited[N][M]; ` `    ``for` `(``int` `i = 0; i < N; i++) { ` `        ``for` `(``int` `j = 0; j < M; j++) ` `        ``{ ` `            ``if` `(grid[i][j] == ``'0'``) ` `                ``visited[i][j] = ``true``; ` `            ``else` `                ``visited[i][j] = ``false``; ` ` `  `            ``// Finding source ` `            ``if` `(grid[i][j] == ``'s'``) ` `            ``{ ` `               ``source.row = i; ` `               ``source.col = j; ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// applying BFS on matrix cells starting from source ` `    ``queue q; ` `    ``q.push(source); ` `    ``visited[source.row][source.col] = ``true``; ` `    ``while` `(!q.empty()) { ` `        ``QItem p = q.front(); ` `        ``q.pop(); ` ` `  `        ``// Destination found; ` `        ``if` `(grid[p.row][p.col] == ``'d'``) ` `            ``return` `p.dist; ` ` `  `        ``// moving up ` `        ``if` `(p.row - 1 >= 0 && ` `            ``visited[p.row - 1][p.col] == ``false``) { ` `            ``q.push(QItem(p.row - 1, p.col, p.dist + 1)); ` `            ``visited[p.row - 1][p.col] = ``true``; ` `        ``} ` ` `  `        ``// moving down ` `        ``if` `(p.row + 1 < N && ` `            ``visited[p.row + 1][p.col] == ``false``) { ` `            ``q.push(QItem(p.row + 1, p.col, p.dist + 1)); ` `            ``visited[p.row + 1][p.col] = ``true``; ` `        ``} ` ` `  `        ``// moving left ` `        ``if` `(p.col - 1 >= 0 && ` `            ``visited[p.row][p.col - 1] == ``false``) { ` `            ``q.push(QItem(p.row, p.col - 1, p.dist + 1)); ` `            ``visited[p.row][p.col - 1] = ``true``; ` `        ``} ` ` `  `         ``// moving right ` `        ``if` `(p.col + 1 < M && ` `            ``visited[p.row][p.col + 1] == ``false``) { ` `            ``q.push(QItem(p.row, p.col + 1, p.dist + 1)); ` `            ``visited[p.row][p.col + 1] = ``true``; ` `        ``} ` `    ``} ` `    ``return` `-1; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``char` `grid[N][M] = { { ``'0'``, ``'*'``, ``'0'``, ``'s'` `}, ` `                        ``{ ``'*'``, ``'0'``, ``'*'``, ``'*'` `}, ` `                        ``{ ``'0'``, ``'*'``, ``'*'``, ``'*'` `}, ` `                        ``{ ``'d'``, ``'*'``, ``'*'``, ``'*'` `} }; ` ` `  `    ``cout << minDistance(grid); ` `    ``return` `0; ` `} `

Output:

```6
```

This article is contributed by Prashant Singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Article Tags :
Practice Tags :

21

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.