Mathematics | Set Operations (Set theory)

Union
Union of the sets A and B, denoted by A ∪ B, is the set of distinct element belongs to set A or set B, or both.

AUB

Above is the Venn Diagram of A U B.

Example : Find the union of A = {2, 3, 4} and B = {3, 4, 5};
Solution : A ∪ B = {2, 3, 4, 5}.

 



Intersection
Intersection of the sets A and B, denoted by A ∩ B, is the set of elements belongs to both A and B i.e. set of common element in A and B.

AinterB

Above is the Venn Diagram of A ∩ B.

Example: Consider the previous sets A and B. Find out A ∩ B.
Solution : A ∩ B = {3, 4}.

 

Disjoint
Two sets are said to be disjoint if their their intersection is the empty set .i.e sets have no common elements.

AdijointB

Above is the Venn Diagram of A disjoint B.

For Example
Let A = {1, 3, 5, 7, 9} and B = { 2, 4 ,6 , 8} .
A and B are disjoint set both of them have no common elements.

 

Set Difference
Difference between sets is denoted by ‘A – B’ , is the set containing elements of set A but not in B. i.e all elements of A except the element of B.

A-B

Above is the Venn Diagram of A-B.

 

Complement
Complement of a set A, denoted by

A^\complement

, is the set of all the element except A. Complement of the set A is U – A.

Acomplemnt

Above is the Venn Diagram of

A^\complement

 

Example : Let A = {0, 2, 4, 6, 8} , B = {0, 1, 2, 3, 4} and C = {0, 3, 6, 9}. What are A ∪ B ∪ C and A ∩ B ∩ C ?

Solution : Set A ∪ B ∪ C contains elements which are present in at least one of A, B and C.

A ∪ B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

Set A ∩ B ∩ C contains element which are present in all the sets A, B and C .i.e { 0 }.

 

See this for Set Theory Introduction.

 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above




Recommended Posts:



1.6 Average Difficulty : 1.6/5.0
Based on 5 vote(s)