Open In App
Related Articles

Root to leaf path sum equal to a given number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a binary tree and a number, return true if the tree has a root-to-leaf path such that adding up all the values along the path equals the given number. Return false if no such path can be found. 
 

Example:

Input:      10          Sum = 23
              /     \
           8        2
        /    \     /
      3      5  2

Output: True 
Explanation:  Root to leaf path sum, existing in this tree are
21 –> 10 – 8 – 3 
23 –> 10 – 8 – 5 
14 –> 10 – 2 – 2
So it is possible to get sum = 23

Recommended Practice

Recursively move to left and right subtree and decrease sum by the value of the current node and if at any point the current node is equal to a leaf node and remaining sum is equal to zero then the answer is true

Follow the given steps to solve the problem using the above approach:

  • Recursively move to the left and right subtree and at each call decrease the sum by the value of the current node
  • If at any level the current node is a leaf node and the remaining sum is equal to zero then return true

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
#define bool int
 
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class node {
public:
    int data;
    node* left;
    node* right;
};
 
/*
Given a tree and a sum, return true if there is a path from
the root down to a leaf, such that adding up all the values
along the path equals the given sum.
 
Strategy: subtract the node value from the sum when
recurring down, and check to see if the sum is 0 when you
when you reach the leaf node.
*/
bool hasPathSum(node* Node, int sum)
{
    if (Node == NULL)
        return 0;
 
    bool ans = 0;
 
    int subSum = sum - Node->data;
 
    /* If we reach a leaf node and sum becomes 0 then return
     * true*/
    if (subSum == 0 && Node->left == NULL
        && Node->right == NULL)
        return 1;
 
    /* otherwise check both subtrees */
    if (Node->left)
        ans = ans || hasPathSum(Node->left, subSum);
    if (Node->right)
        ans = ans || hasPathSum(Node->right, subSum);
 
    return ans;
}
 
/* UTILITY FUNCTIONS */
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
node* newnode(int data)
{
    node* Node = new node();
    Node->data = data;
    Node->left = NULL;
    Node->right = NULL;
 
    return (Node);
}
 
// Driver's Code
int main()
{
 
    int sum = 21;
 
    /* Constructed binary tree is
                10
            / \
            8 2
        / \ /
        3 5 2
    */
    node* root = newnode(10);
    root->left = newnode(8);
    root->right = newnode(2);
    root->left->left = newnode(3);
    root->left->right = newnode(5);
    root->right->left = newnode(2);
     
      // Function call
    if (hasPathSum(root, sum))
        cout << "There is a root-to-leaf path with sum "
             << sum;
    else
        cout << "There is no root-to-leaf path with sum "
             << sum;
 
    return 0;
}
 
// This code is contributed by rathbhupendra


C




// C program for the above approach
 
#include <stdio.h>
#include <stdlib.h>
#define bool int
 
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
struct node {
    int data;
    struct node* left;
    struct node* right;
};
 
/*
 Given a tree and a sum, return
 true if there is a path from
 the root down to a leaf, such
 that adding up all the values
 along the path equals the given sum.
 
 Strategy: subtract the node
 value from the sum when
 recurring down, and check to
 see if the sum is 0 when you reach the leaf node.
*/
bool hasPathSum(struct node* node, int sum)
{
    if (node == NULL)
        return 0;
    bool ans = 0;
 
    int subSum = sum - node->data;
 
    /* If we reach a leaf node
          and sum becomes 0 then
           * return true*/
    if (subSum == 0 && node->left == NULL
        && node->right == NULL)
        return 1;
 
    /* otherwise check both subtrees */
    if (node->left)
        ans = ans || hasPathSum(node->left, subSum);
    if (node->right)
        ans = ans || hasPathSum(node->right, subSum);
 
    return ans;
}
 
/* UTILITY FUNCTIONS */
/* Helper function that
   allocates a new node with the
   given data and NULL left
   and right pointers. */
struct node* newnode(int data)
{
    struct node* node
        = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
// Driver's Code
int main()
{
 
    int sum = 21;
 
    /* Constructed binary tree is
              10
            /   \
          8      2
        /  \    /
      3     5  2
    */
    struct node* root = newnode(10);
    root->left = newnode(8);
    root->right = newnode(2);
    root->left->left = newnode(3);
    root->left->right = newnode(5);
    root->right->left = newnode(2);
 
    // Function call
    if (hasPathSum(root, sum))
        printf("There is a root-to-leaf path with sum %d",
               sum);
    else
        printf("There is no root-to-leaf path with sum %d",
               sum);
 
    getchar();
    return 0;
}


Java




// Java program to print
// root to leaf path sum
// equal to a given number
 
/* A binary tree node has data,
 pointer to left child
   and a pointer to right child */
class Node {
    int data;
    Node left, right;
 
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class BinaryTree {
 
    Node root;
 
    /*
     Given a tree and a sum,
     return true if there is a path
     from the root down to a leaf,
     such that adding up all
     the values along the path
     equals the given sum.
 
     Strategy: subtract the node
     value from the sum when
     recurring down, and check to
     see if the sum is 0 you reach the leaf node.
     */
 
    boolean hasPathSum(Node node, int sum)
    {
        /* If the tree is empty there is no way the reqd sum
         * will be there. */
        if (root == null)
            return false;
        boolean ans = false;
        int subSum = sum - node.data;
        if (subSum == 0 && node.left == null
            && node.right == null)
            return (ans = true);
        if (node.left != null)
 
            // ans || hasPathSum... has no utility if the
            // ans is false
            ans = ans || hasPathSum(node.left, subSum);
 
        if (node.right != null)
 
            // But if it is true then we can avoid calling
            // hasPathSum here as answer has already been
            // found
            ans = ans || hasPathSum(node.right, subSum);
        return (ans);
    }
 
    // Driver's Code
    public static void main(String args[])
    {
        int sum = 21;
 
        /* Constructed binary tree is
              10
             /  \
           8     2
          / \   /
         3   5 2
        */
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.left.right = new Node(5);
        tree.root.right.left = new Node(2);
         
          // Function call
        if (tree.hasPathSum(tree.root, sum))
            System.out.println(
                "There is a root to leaf path with sum "
                + sum);
        else
            System.out.println(
                "There is no root to leaf path with sum "
                + sum);
    }
}
 
// This code has been contributed by Mayank
// Jaiswal(mayank_24)


Python3




# Python3 program to find if
# there is a root to sum path
 
# A binary tree node
 
 
class Node:
 
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
 
"""
 Given a tree and a sum, return
 true if there is a path from the root
 down to a leaf, such that
 adding up all the values along the path
 equals the given sum.
  
 Strategy: subtract the node
 value from the sum when recurring down,
 and check to see if the sum
 is 0 when you run out of tree.
"""
# s is the sum
 
 
def hasPathSum(node, s):
    ans = 0
    subSum = s - node.data
 
    # If we reach a leaf node and sum becomes 0, then
    # return True
    if(subSum == 0 and node.left == None and node.right == None):
        return True
 
    # Otherwise check both subtrees
    if node.left is not None:
        ans = ans or hasPathSum(node.left, subSum)
    if node.right is not None:
        ans = ans or hasPathSum(node.right, subSum)
 
    return ans
 
# Driver's Code
if __name__ == "__main__":
    s = 21
    root = Node(10)
    root.left = Node(8)
    root.right = Node(2)
    root.left.right = Node(5)
    root.left.left = Node(3)
    root.right.left = Node(2)
     
    # Function call
    if hasPathSum(root, s):
        print("There is a root-to-leaf path with sum %d" % (s))
    else:
        print("There is no root-to-leaf path with sum %d" % (s))
 
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#




// C# program to print root to
// leaf path sum equal to a given number
using System;
 
/* A binary tree node has data, pointer
to left child and a pointer to right child */
public class Node {
    public int data;
    public Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class GFG {
    public Node root;
 
    /*
    Given a tree and a sum, return true if
    there is a path from the root down to a
    leaf, such that adding up all the values
    along the path equals the given sum.
 
    Strategy: subtract the node value from the
    sum when recurring down, and check to see
    if the sum is 0 when you you reach the leaf node..
    */
 
    public virtual bool haspathSum(Node node, int sum)
    {
        ans = false;
 
        int subsum = sum - node.data;
        if (subsum == 0 && node.left == null
            && node.right == null) {
            return true;
        }
 
        /* otherwise check both subtrees */
        if (node.left != null) {
            ans = ans || haspathSum(node.left, subsum);
        }
        if (node.right != null) {
            ans = ans || haspathSum(node.right, subsum);
        }
        return ans;
    }
 
    // Driver's Code
    public static void Main(string[] args)
    {
        int sum = 21;
 
        /* Constructed binary tree is
            10
            / \
        8     2
        / \ /
        3 5 2
        */
        GFG tree = new GFG();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.left.right = new Node(5);
        tree.root.right.left = new Node(2);
 
          // Function call
        if (tree.haspathSum(tree.root, sum)) {
            Console.WriteLine("There is a root to leaf "
                              + "path with sum " + sum);
        }
        else {
            Console.WriteLine("There is no root to leaf "
                              + "path with sum " + sum);
        }
    }
}
 
// This code is contributed by Shrikant13


Javascript




// javascript program to print
// root to leaf path sum
// equal to a given number
 
/* A binary tree node has data,
 pointer to left child
   and a pointer to right child */
 
class Node {
        constructor(val) {
            this.data = val;
            this.left = null;
            this.right = null;
        }
    }
 
var root;
 
    /*
     Given a tree and a sum,
     return true if there is a path
     from the root down to a leaf,
     such that adding up all
     the values along the path
     equals the given sum.
 
     Strategy: subtract the node
     value from the sum when
     recurring down, and check to
     see if the sum is 0 you reach the leaf node.
     */
 
    function hasPathSum(node , sum)
    {
      var ans = false;
      var subSum = sum - node.data;
      if(subSum == 0 && node.left == null && node.right == null)
        return(ans = true);
      if(node.left != null
         
        // ans || hasPathSum... has no utility if the ans is false
        ans = ans || hasPathSum(node.left, subSum);       
      
      if(node.right != null)
         
        // But if it is true then we can afunction calling hasPathSum
        // here as answer has already been found
        ans = ans || hasPathSum(node.right, subSum);   
      return(ans);
    }
 
    // Driver Code
 
        var sum = 21;
 
        /* Constructed binary tree is
              10
             /  \
           8     2
          / \   /
         3   5 2
        */
 
        var root = new Node(10);
        root.left = new Node(8);
        root.right = new Node(2);
        root.left.left = new Node(3);
        root.left.right = new Node(5);
        root.right.left = new Node(2);
 
        if (hasPathSum(root, sum))
            document.write(
                "There is a root to leaf path with sum "
                + sum);
        else
            document.write(
                "There is no root to leaf path with sum "
                + sum);
 
// This code is contributed by gauravrajput1


Output

There is a root-to-leaf path with sum 21


Time Complexity: O(N)

Space Complexity: O(N) or O(H)

Approach 2: Iterative Approach using Stack
In this approach, we use a stack to perform a preorder traversal of the binary tree. We maintain two stacks – one to store the nodes and another to store the sum of values along the path to that node. Whenever we encounter a leaf node, we check if the sum matches the target sum. If it does, we return true, otherwise, we continue traversing the tree.

  • Check if the root node is NULL. If it is, return false, since there is no path to follow.
  • Create two stacks, one for the nodes and one for the sums. Push the root node onto the node stack and its data onto the sum stack.
  • While the node stack is not empty, do the following:
    • Pop a node from the node stack and its corresponding sum from the sum stack.
    •  Check if the node is a leaf node (i.e., it has no left or right child). If it is, check if the sum equals the target sum. If it does, return true, since we have found a path that adds up to the target sum.
    •  If the node has a left child, push it onto the node stack and push the sum plus the left child’s data onto the sum stack.
    • If the node has a right child, push it onto the node stack and push the sum plus the right child’s data onto the sum stack.
  • If we reach this point, it means we have exhausted all paths and haven’t found any that add up to the target sum. Return false.

C++




#include <bits/stdc++.h>
using namespace std;
 
struct Node {
    int data;
    Node* left, *right;
    Node(int val) {
        data = val;
        left = right = NULL;
    }
};
 
bool hasPathSum(Node* root, int targetSum) {
    if (root == NULL) return false;
    stack<Node*> s;
    stack<int> sums;
    s.push(root);
    sums.push(root->data);
    while (!s.empty()) {
        Node* node = s.top(); s.pop();
        int sum = sums.top(); sums.pop();
        if (node->left == NULL && node->right == NULL) {
            if (sum == targetSum) return true;
        }
        if (node->left != NULL) {
            s.push(node->left);
            sums.push(sum + node->left->data);
        }
        if (node->right != NULL) {
            s.push(node->right);
            sums.push(sum + node->right->data);
        }
    }
    return false;
}
 
int main() {
    Node* root = new Node(10);
    root->left = new Node(8);
    root->right = new Node(2);
    root->left->left = new Node(3);
    root->left->right = new Node(5);
    root->right->left = new Node(2);
    
 
    int targetSum = 23;
    if (hasPathSum(root, targetSum)) {
          cout << "There is a root-to-leaf path with sum "
             << targetSum;
    }
    else {
          cout << "There is no root-to-leaf path with sum "
             << targetSum;
    }
    return 0;
}


Java




import java.util.Stack;
 
class Node {
    int data;
    Node left, right;
 
    Node(int val) {
        data = val;
        left = right = null;
    }
}
 
public class PathSum {
    public static boolean hasPathSum(Node root, int targetSum) {
        if (root == null)
            return false;
 
        Stack<Node> stack = new Stack<>();
        Stack<Integer> sums = new Stack<>();
        stack.push(root);
        sums.push(root.data);
 
        while (!stack.isEmpty()) {
            Node node = stack.pop();
            int sum = sums.pop();
 
            if (node.left == null && node.right == null) {
                if (sum == targetSum)
                    return true;
            }
 
            if (node.left != null) {
                stack.push(node.left);
                sums.push(sum + node.left.data);
            }
            if (node.right != null) {
                stack.push(node.right);
                sums.push(sum + node.right.data);
            }
        }
 
        return false;
    }
 
    public static void main(String[] args) {
        Node root = new Node(10);
        root.left = new Node(8);
        root.right = new Node(2);
        root.left.left = new Node(3);
        root.left.right = new Node(5);
        root.right.left = new Node(2);
 
        int targetSum = 23;
        if (hasPathSum(root, targetSum)) {
            System.out.println("There is a root-to-leaf path with sum " + targetSum);
        } else {
            System.out.println("There is no root-to-leaf path with sum " + targetSum);
        }
    }
}


Python3




class Node:
    def __init__(self, val):
        self.data = val
        self.left = None
        self.right = None
 
def hasPathSum(root, targetSum):
    if not root:
        return False
    s = [root]
    sums = [root.data]
    while s:
        node = s.pop()
        sum_val = sums.pop()
        if not node.left and not node.right:
            if sum_val == targetSum:
                return True
        if node.left:
            s.append(node.left)
            sums.append(sum_val + node.left.data)
        if node.right:
            s.append(node.right)
            sums.append(sum_val + node.right.data)
    return False
 
if __name__ == '__main__':
    root = Node(10)
    root.left = Node(8)
    root.right = Node(2)
    root.left.left = Node(3)
    root.left.right = Node(5)
    root.right.left = Node(2)
 
    targetSum = 23
    if hasPathSum(root, targetSum):
        print("There is a root-to-leaf path with sum", targetSum)
    else:
        print("There is no root-to-leaf path with sum", targetSum)


C#




using System;
using System.Collections.Generic;
 
public class Node
{
    public int data;
    public Node left, right;
 
    public Node(int val)
    {
        data = val;
        left = right = null;
    }
}
 
public class PathSum
{
    public static bool HasPathSum(Node root, int targetSum)
    {
        if (root == null)
            return false;
 
        Stack<Node> stack = new Stack<Node>();
        Stack<int> sums = new Stack<int>();
        stack.Push(root);
        sums.Push(root.data);
 
        while (stack.Count > 0)
        {
            Node node = stack.Pop();
            int sum = sums.Pop();
 
            if (node.left == null && node.right == null)
            {
                if (sum == targetSum)
                    return true;
            }
 
            if (node.left != null)
            {
                stack.Push(node.left);
                sums.Push(sum + node.left.data);
            }
            if (node.right != null)
            {
                stack.Push(node.right);
                sums.Push(sum + node.right.data);
            }
        }
 
        return false;
    }
 
    public static void Main(string[] args)
    {
        Node root = new Node(10);
        root.left = new Node(8);
        root.right = new Node(2);
        root.left.left = new Node(3);
        root.left.right = new Node(5);
        root.right.left = new Node(2);
 
        int targetSum = 23;
        if (HasPathSum(root, targetSum))
        {
            Console.WriteLine("There is a root-to-leaf path with sum " + targetSum);
        }
        else
        {
            Console.WriteLine("There is no root-to-leaf path with sum " + targetSum);
        }
    }
}


Javascript




class Node {
    constructor(val) {
        this.data = val;
        this.left = null;
        this.right = null;
    }
}
 
function hasPathSum(root, targetSum) {
    if (root === null) {
        return false;
    }
 
    const stack = [];
    const sums = [];
    stack.push(root);
    sums.push(root.data);
 
    while (stack.length > 0) {
        const node = stack.pop();
        const sum = sums.pop();
 
        if (node.left === null && node.right === null) {
            if (sum === targetSum) {
                return true;
            }
        }
 
        if (node.left !== null) {
            stack.push(node.left);
            sums.push(sum + node.left.data);
        }
        if (node.right !== null) {
            stack.push(node.right);
            sums.push(sum + node.right.data);
        }
    }
 
    return false;
}
 
const root = new Node(10);
root.left = new Node(8);
root.right = new Node(2);
root.left.left = new Node(3);
root.left.right = new Node(5);
root.right.left = new Node(2);
 
const targetSum = 23;
if (hasPathSum(root, targetSum)) {
    console.log("There is a root-to-leaf path with sum " + targetSum);
} else {
    console.log("There is no root-to-leaf path with sum " + targetSum);
}


Output

There is a root-to-leaf path with sum 23


Time Complexity: O(N)
Auxiliary Space: O( N)

References: http://cslibrary.stanford.edu/110/BinaryTrees.html
Author: Tushar Roy
Please write comments if you find any bug in above code/algorithm, or find other ways to solve the same problem


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 28 Jul, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials