Given a binary tree and a number, return true if the tree has a root-to-leaf path such that adding up all the values along the path equals the given number. Return false if no such path can be found.

Example:
Input: 10 Sum = 23
/ \
8 2
/ \ /
3 5 2
Output: True
Explanation: Root to leaf path sum, existing in this tree are
21 –> 10 – 8 – 3
23 –> 10 – 8 – 5
14 –> 10 – 2 – 2
So it is possible to get sum = 23
Recursively move to left and right subtree and decrease sum by the value of the current node and if at any point the current node is equal to a leaf node and remaining sum is equal to zero then the answer is true
Follow the given steps to solve the problem using the above approach:
- Recursively move to the left and right subtree and at each call decrease the sum by the value of the current node
- If at any level the current node is a leaf node and the remaining sum is equal to zero then return true
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
#define bool int
class node {
public :
int data;
node* left;
node* right;
};
bool hasPathSum(node* Node, int sum)
{
if (Node == NULL)
return 0;
bool ans = 0;
int subSum = sum - Node->data;
if (subSum == 0 && Node->left == NULL
&& Node->right == NULL)
return 1;
if (Node->left)
ans = ans || hasPathSum(Node->left, subSum);
if (Node->right)
ans = ans || hasPathSum(Node->right, subSum);
return ans;
}
node* newnode( int data)
{
node* Node = new node();
Node->data = data;
Node->left = NULL;
Node->right = NULL;
return (Node);
}
int main()
{
int sum = 21;
node* root = newnode(10);
root->left = newnode(8);
root->right = newnode(2);
root->left->left = newnode(3);
root->left->right = newnode(5);
root->right->left = newnode(2);
if (hasPathSum(root, sum))
cout << "There is a root-to-leaf path with sum "
<< sum;
else
cout << "There is no root-to-leaf path with sum "
<< sum;
return 0;
}
|
C
#include <stdio.h>
#include <stdlib.h>
#define bool int
struct node {
int data;
struct node* left;
struct node* right;
};
bool hasPathSum( struct node* node, int sum)
{
if (node == NULL)
return 0;
bool ans = 0;
int subSum = sum - node->data;
if (subSum == 0 && node->left == NULL
&& node->right == NULL)
return 1;
if (node->left)
ans = ans || hasPathSum(node->left, subSum);
if (node->right)
ans = ans || hasPathSum(node->right, subSum);
return ans;
}
struct node* newnode( int data)
{
struct node* node
= ( struct node*) malloc ( sizeof ( struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return (node);
}
int main()
{
int sum = 21;
struct node* root = newnode(10);
root->left = newnode(8);
root->right = newnode(2);
root->left->left = newnode(3);
root->left->right = newnode(5);
root->right->left = newnode(2);
if (hasPathSum(root, sum))
printf ( "There is a root-to-leaf path with sum %d" ,
sum);
else
printf ( "There is no root-to-leaf path with sum %d" ,
sum);
getchar ();
return 0;
}
|
Java
class Node {
int data;
Node left, right;
Node( int item)
{
data = item;
left = right = null ;
}
}
class BinaryTree {
Node root;
boolean hasPathSum(Node node, int sum)
{
if (root == null )
return false ;
boolean ans = false ;
int subSum = sum - node.data;
if (subSum == 0 && node.left == null
&& node.right == null )
return (ans = true );
if (node.left != null )
ans = ans || hasPathSum(node.left, subSum);
if (node.right != null )
ans = ans || hasPathSum(node.right, subSum);
return (ans);
}
public static void main(String args[])
{
int sum = 21 ;
BinaryTree tree = new BinaryTree();
tree.root = new Node( 10 );
tree.root.left = new Node( 8 );
tree.root.right = new Node( 2 );
tree.root.left.left = new Node( 3 );
tree.root.left.right = new Node( 5 );
tree.root.right.left = new Node( 2 );
if (tree.hasPathSum(tree.root, sum))
System.out.println(
"There is a root to leaf path with sum "
+ sum);
else
System.out.println(
"There is no root to leaf path with sum "
+ sum);
}
}
|
Python3
class Node:
def __init__( self , data):
self .data = data
self .left = None
self .right = None
def hasPathSum(node, s):
ans = 0
subSum = s - node.data
if (subSum = = 0 and node.left = = None and node.right = = None ):
return True
if node.left is not None :
ans = ans or hasPathSum(node.left, subSum)
if node.right is not None :
ans = ans or hasPathSum(node.right, subSum)
return ans
if __name__ = = "__main__" :
s = 21
root = Node( 10 )
root.left = Node( 8 )
root.right = Node( 2 )
root.left.right = Node( 5 )
root.left.left = Node( 3 )
root.right.left = Node( 2 )
if hasPathSum(root, s):
print ( "There is a root-to-leaf path with sum %d" % (s))
else :
print ( "There is no root-to-leaf path with sum %d" % (s))
|
C#
using System;
public class Node {
public int data;
public Node left, right;
public Node( int item)
{
data = item;
left = right = null ;
}
}
class GFG {
public Node root;
public virtual bool haspathSum(Node node, int sum)
{
ans = false ;
int subsum = sum - node.data;
if (subsum == 0 && node.left == null
&& node.right == null ) {
return true ;
}
if (node.left != null ) {
ans = ans || haspathSum(node.left, subsum);
}
if (node.right != null ) {
ans = ans || haspathSum(node.right, subsum);
}
return ans;
}
public static void Main( string [] args)
{
int sum = 21;
GFG tree = new GFG();
tree.root = new Node(10);
tree.root.left = new Node(8);
tree.root.right = new Node(2);
tree.root.left.left = new Node(3);
tree.root.left.right = new Node(5);
tree.root.right.left = new Node(2);
if (tree.haspathSum(tree.root, sum)) {
Console.WriteLine( "There is a root to leaf "
+ "path with sum " + sum);
}
else {
Console.WriteLine( "There is no root to leaf "
+ "path with sum " + sum);
}
}
}
|
Javascript
class Node {
constructor(val) {
this .data = val;
this .left = null ;
this .right = null ;
}
}
var root;
function hasPathSum(node , sum)
{
var ans = false ;
var subSum = sum - node.data;
if (subSum == 0 && node.left == null && node.right == null )
return (ans = true );
if (node.left != null )
ans = ans || hasPathSum(node.left, subSum);
if (node.right != null )
ans = ans || hasPathSum(node.right, subSum);
return (ans);
}
var sum = 21;
var root = new Node(10);
root.left = new Node(8);
root.right = new Node(2);
root.left.left = new Node(3);
root.left.right = new Node(5);
root.right.left = new Node(2);
if (hasPathSum(root, sum))
document.write(
"There is a root to leaf path with sum "
+ sum);
else
document.write(
"There is no root to leaf path with sum "
+ sum);
|
Output
There is a root-to-leaf path with sum 21
Time Complexity: O(N)
Space Complexity: O(N) or O(H)
Approach 2: Iterative Approach using Stack
In this approach, we use a stack to perform a preorder traversal of the binary tree. We maintain two stacks – one to store the nodes and another to store the sum of values along the path to that node. Whenever we encounter a leaf node, we check if the sum matches the target sum. If it does, we return true, otherwise, we continue traversing the tree.
- Check if the root node is NULL. If it is, return false, since there is no path to follow.
- Create two stacks, one for the nodes and one for the sums. Push the root node onto the node stack and its data onto the sum stack.
- While the node stack is not empty, do the following:
- Pop a node from the node stack and its corresponding sum from the sum stack.
- Check if the node is a leaf node (i.e., it has no left or right child). If it is, check if the sum equals the target sum. If it does, return true, since we have found a path that adds up to the target sum.
- If the node has a left child, push it onto the node stack and push the sum plus the left child’s data onto the sum stack.
- If the node has a right child, push it onto the node stack and push the sum plus the right child’s data onto the sum stack.
- If we reach this point, it means we have exhausted all paths and haven’t found any that add up to the target sum. Return false.
C++
#include <bits/stdc++.h>
using namespace std;
struct Node {
int data;
Node* left, *right;
Node( int val) {
data = val;
left = right = NULL;
}
};
bool hasPathSum(Node* root, int targetSum) {
if (root == NULL) return false ;
stack<Node*> s;
stack< int > sums;
s.push(root);
sums.push(root->data);
while (!s.empty()) {
Node* node = s.top(); s.pop();
int sum = sums.top(); sums.pop();
if (node->left == NULL && node->right == NULL) {
if (sum == targetSum) return true ;
}
if (node->left != NULL) {
s.push(node->left);
sums.push(sum + node->left->data);
}
if (node->right != NULL) {
s.push(node->right);
sums.push(sum + node->right->data);
}
}
return false ;
}
int main() {
Node* root = new Node(10);
root->left = new Node(8);
root->right = new Node(2);
root->left->left = new Node(3);
root->left->right = new Node(5);
root->right->left = new Node(2);
int targetSum = 23;
if (hasPathSum(root, targetSum)) {
cout << "There is a root-to-leaf path with sum "
<< targetSum;
}
else {
cout << "There is no root-to-leaf path with sum "
<< targetSum;
}
return 0;
}
|
Java
import java.util.Stack;
class Node {
int data;
Node left, right;
Node( int val) {
data = val;
left = right = null ;
}
}
public class PathSum {
public static boolean hasPathSum(Node root, int targetSum) {
if (root == null )
return false ;
Stack<Node> stack = new Stack<>();
Stack<Integer> sums = new Stack<>();
stack.push(root);
sums.push(root.data);
while (!stack.isEmpty()) {
Node node = stack.pop();
int sum = sums.pop();
if (node.left == null && node.right == null ) {
if (sum == targetSum)
return true ;
}
if (node.left != null ) {
stack.push(node.left);
sums.push(sum + node.left.data);
}
if (node.right != null ) {
stack.push(node.right);
sums.push(sum + node.right.data);
}
}
return false ;
}
public static void main(String[] args) {
Node root = new Node( 10 );
root.left = new Node( 8 );
root.right = new Node( 2 );
root.left.left = new Node( 3 );
root.left.right = new Node( 5 );
root.right.left = new Node( 2 );
int targetSum = 23 ;
if (hasPathSum(root, targetSum)) {
System.out.println( "There is a root-to-leaf path with sum " + targetSum);
} else {
System.out.println( "There is no root-to-leaf path with sum " + targetSum);
}
}
}
|
Python3
class Node:
def __init__( self , val):
self .data = val
self .left = None
self .right = None
def hasPathSum(root, targetSum):
if not root:
return False
s = [root]
sums = [root.data]
while s:
node = s.pop()
sum_val = sums.pop()
if not node.left and not node.right:
if sum_val = = targetSum:
return True
if node.left:
s.append(node.left)
sums.append(sum_val + node.left.data)
if node.right:
s.append(node.right)
sums.append(sum_val + node.right.data)
return False
if __name__ = = '__main__' :
root = Node( 10 )
root.left = Node( 8 )
root.right = Node( 2 )
root.left.left = Node( 3 )
root.left.right = Node( 5 )
root.right.left = Node( 2 )
targetSum = 23
if hasPathSum(root, targetSum):
print ( "There is a root-to-leaf path with sum" , targetSum)
else :
print ( "There is no root-to-leaf path with sum" , targetSum)
|
C#
using System;
using System.Collections.Generic;
public class Node
{
public int data;
public Node left, right;
public Node( int val)
{
data = val;
left = right = null ;
}
}
public class PathSum
{
public static bool HasPathSum(Node root, int targetSum)
{
if (root == null )
return false ;
Stack<Node> stack = new Stack<Node>();
Stack< int > sums = new Stack< int >();
stack.Push(root);
sums.Push(root.data);
while (stack.Count > 0)
{
Node node = stack.Pop();
int sum = sums.Pop();
if (node.left == null && node.right == null )
{
if (sum == targetSum)
return true ;
}
if (node.left != null )
{
stack.Push(node.left);
sums.Push(sum + node.left.data);
}
if (node.right != null )
{
stack.Push(node.right);
sums.Push(sum + node.right.data);
}
}
return false ;
}
public static void Main( string [] args)
{
Node root = new Node(10);
root.left = new Node(8);
root.right = new Node(2);
root.left.left = new Node(3);
root.left.right = new Node(5);
root.right.left = new Node(2);
int targetSum = 23;
if (HasPathSum(root, targetSum))
{
Console.WriteLine( "There is a root-to-leaf path with sum " + targetSum);
}
else
{
Console.WriteLine( "There is no root-to-leaf path with sum " + targetSum);
}
}
}
|
Javascript
class Node {
constructor(val) {
this .data = val;
this .left = null ;
this .right = null ;
}
}
function hasPathSum(root, targetSum) {
if (root === null ) {
return false ;
}
const stack = [];
const sums = [];
stack.push(root);
sums.push(root.data);
while (stack.length > 0) {
const node = stack.pop();
const sum = sums.pop();
if (node.left === null && node.right === null ) {
if (sum === targetSum) {
return true ;
}
}
if (node.left !== null ) {
stack.push(node.left);
sums.push(sum + node.left.data);
}
if (node.right !== null ) {
stack.push(node.right);
sums.push(sum + node.right.data);
}
}
return false ;
}
const root = new Node(10);
root.left = new Node(8);
root.right = new Node(2);
root.left.left = new Node(3);
root.left.right = new Node(5);
root.right.left = new Node(2);
const targetSum = 23;
if (hasPathSum(root, targetSum)) {
console.log( "There is a root-to-leaf path with sum " + targetSum);
} else {
console.log( "There is no root-to-leaf path with sum " + targetSum);
}
|
Output
There is a root-to-leaf path with sum 23
Time Complexity: O(N)
Auxiliary Space: O( N)
References: http://cslibrary.stanford.edu/110/BinaryTrees.html
Author: Tushar Roy
Please write comments if you find any bug in above code/algorithm, or find other ways to solve the same problem
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
28 Jul, 2023
Like Article
Save Article