# Represent n as the sum of exactly k powers of two | Set 2

Given two integers **n** and **k**, the task is to find whether it is possible to represent **n** as the sum of exactly **k** powers of **2**. If possible then print **k** positive integers such that they are powers of **2** and their sum is exactly equal to **n** else print **Impossible**.**Examples:**

Input:n = 9, k = 4Output:1 2 2 4

1, 2 and 4 are all powers of 2 and 1 + 2 + 2 + 4 = 9.Input:n = 3, k = 7Output:Impossible

It is impossible since 3 cannot be represented as sum of 7 numbers which are powers of 2.

We have discussed one approach to solve this problem in Find k numbers which are powers of 2 and have sum N. In this post, a different approach is being discussed.**Approach:**

- Create an array
**arr[]**of size**k**with all elements initialized to**1**and create a variable**sum = k**. - Now starting from the last element of
**arr[]**- If
**sum + arr[i] â‰¤ n**then update**sum = sum + arr[i]**and**arr[i] = arr[i] * 2**. - Else skip the current element.

- If
- If
**sum = n**then the contents of**arr[]**are the required elements. - Else it is impossible to represent
**n**as exactly**k**powers of**2**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the above approach` `#include <iostream>` `using` `namespace` `std;` `// Function to print k numbers which are powers of two` `// and whose sum is equal to n` `void` `FindAllElements(` `int` `n, ` `int` `k)` `{` ` ` `// Initialising the sum with k` ` ` `int` `sum = k;` ` ` `// Initialising an array A with k elements` ` ` `// and filling all elements with 1` ` ` `int` `A[k];` ` ` `fill(A, A + k, 1);` ` ` `for` `(` `int` `i = k - 1; i >= 0; --i) {` ` ` `// Iterating A[] from k-1 to 0` ` ` `while` `(sum + A[i] <= n) {` ` ` `// Update sum and A[i]` ` ` `// till sum + A[i] is less than equal to n` ` ` `sum += A[i];` ` ` `A[i] *= 2;` ` ` `}` ` ` `}` ` ` `// Impossible to find the combination` ` ` `if` `(sum != n) {` ` ` `cout << ` `"Impossible"` `;` ` ` `}` ` ` `// Possible solution is stored in A[]` ` ` `else` `{` ` ` `for` `(` `int` `i = 0; i < k; ++i)` ` ` `cout << A[i] << ` `' '` `;` ` ` `}` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 12;` ` ` `int` `k = 6;` ` ` `FindAllElements(n, k);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the above approach` `import` `java.util.Arrays;` `public` `class` `GfG {` ` ` ` ` `// Function to print k numbers which are powers of two` ` ` `// and whose sum is equal to n` ` ` `public` `static` `void` `FindAllElements(` `int` `n, ` `int` `k)` ` ` `{` ` ` `// Initialising the sum with k` ` ` `int` `sum = k;` ` ` ` ` `// Initialising an array A with k elements` ` ` `// and filling all elements with 1` ` ` `int` `[] A = ` `new` `int` `[k];` ` ` `Arrays.fill(A, ` `0` `, k, ` `1` `);` ` ` ` ` `for` `(` `int` `i = k - ` `1` `; i >= ` `0` `; --i) {` ` ` ` ` `// Iterating A[] from k-1 to 0` ` ` `while` `(sum + A[i] <= n) {` ` ` ` ` `// Update sum and A[i]` ` ` `// till sum + A[i] is less than equal to n` ` ` `sum += A[i];` ` ` `A[i] *= ` `2` `;` ` ` `}` ` ` `}` ` ` ` ` `// Impossible to find the combination` ` ` `if` `(sum != n) {` ` ` `System.out.print(` `"Impossible"` `);` ` ` `}` ` ` ` ` `// Possible solution is stored in A[]` ` ` `else` `{` ` ` `for` `(` `int` `i = ` `0` `; i < k; ++i)` ` ` `System.out.print(A[i] + ` `" "` `);` ` ` `}` ` ` `}` ` ` ` ` `public` `static` `void` `main(String []args){` ` ` ` ` `int` `n = ` `12` `;` ` ` `int` `k = ` `6` `;` ` ` ` ` `FindAllElements(n, k);` ` ` `}` `}` ` ` `// This code is contributed by Rituraj Jain` |

## Python3

`# Python 3 implementation of the above approach` `# Function to print k numbers which are` `# powers of two and whose sum is equal to n` `def` `FindAllElements(n, k):` ` ` ` ` `# Initialising the sum with k` ` ` `sum` `=` `k` ` ` `# Initialising an array A with k elements` ` ` `# and filling all elements with 1` ` ` `A ` `=` `[` `1` `for` `i ` `in` `range` `(k)]` ` ` `i ` `=` `k ` `-` `1` ` ` `while` `(i >` `=` `0` `):` ` ` ` ` `# Iterating A[] from k-1 to 0` ` ` `while` `(` `sum` `+` `A[i] <` `=` `n):` ` ` ` ` `# Update sum and A[i] till` ` ` `# sum + A[i] is less than equal to n` ` ` `sum` `+` `=` `A[i]` ` ` `A[i] ` `*` `=` `2` ` ` `i ` `-` `=` `1` ` ` ` ` `# Impossible to find the combination` ` ` `if` `(` `sum` `!` `=` `n):` ` ` `print` `(` `"Impossible"` `)` ` ` `# Possible solution is stored in A[]` ` ` `else` `:` ` ` `for` `i ` `in` `range` `(` `0` `, k, ` `1` `):` ` ` `print` `(A[i], end ` `=` `' '` `)` `# Driver code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `n ` `=` `12` ` ` `k ` `=` `6` ` ` `FindAllElements(n, k)` `# This code is contributed by` `# Surendra_Gangwar` |

## C#

`// C# implementation of the above approach` `using` `System;` `class` `GfG` `{` ` ` ` ` `// Function to print k numbers` ` ` `// which are powers of two` ` ` `// and whose sum is equal to n` ` ` `public` `static` `void` `FindAllElements(` `int` `n, ` `int` `k)` ` ` `{` ` ` `// Initialising the sum with k` ` ` `int` `sum = k;` ` ` ` ` `// Initialising an array A with k elements` ` ` `// and filling all elements with 1` ` ` `int` `[] A = ` `new` `int` `[k];` ` ` `for` `(` `int` `i = 0; i < k; i++)` ` ` `A[i] = 1;` ` ` ` ` `for` `(` `int` `i = k - 1; i >= 0; --i)` ` ` `{` ` ` ` ` `// Iterating A[] from k-1 to 0` ` ` `while` `(sum + A[i] <= n)` ` ` `{` ` ` ` ` `// Update sum and A[i]` ` ` `// till sum + A[i] is less than equal to n` ` ` `sum += A[i];` ` ` `A[i] *= 2;` ` ` `}` ` ` `}` ` ` ` ` `// Impossible to find the combination` ` ` `if` `(sum != n)` ` ` `{` ` ` `Console.Write(` `"Impossible"` `);` ` ` `}` ` ` ` ` `// Possible solution is stored in A[]` ` ` `else` ` ` `{` ` ` `for` `(` `int` `i = 0; i < k; ++i)` ` ` `Console.Write(A[i] + ` `" "` `);` ` ` `}` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main(String []args)` ` ` `{` ` ` ` ` `int` `n = 12;` ` ` `int` `k = 6;` ` ` ` ` `FindAllElements(n, k);` ` ` `}` `}` `// This code contributed by Rajput-Ji` |

## PHP

`<?php` `// PHP implementation of the above approach` `// Function to print k numbers which are` `// powers of two and whose sum is equal to n` `function` `FindAllElements(` `$n` `, ` `$k` `)` `{` ` ` `// Initialising the sum with k` ` ` `$sum` `= ` `$k` `;` ` ` `// Initialising an array A with k elements` ` ` `// and filling all elements with 1` ` ` `$A` `= ` `array_fill` `(0, ` `$k` `, 1) ;` ` ` `for` `(` `$i` `= ` `$k` `- 1; ` `$i` `>= 0; --` `$i` `)` ` ` `{` ` ` `// Iterating A[] from k-1 to 0` ` ` `while` `(` `$sum` `+ ` `$A` `[` `$i` `] <= ` `$n` `)` ` ` `{` ` ` `// Update sum and A[i] till ` ` ` `// sum + A[i] is less than equal to n` ` ` `$sum` `+= ` `$A` `[` `$i` `];` ` ` `$A` `[` `$i` `] *= 2;` ` ` `}` ` ` `}` ` ` `// Impossible to find the combination` ` ` `if` `(` `$sum` `!= ` `$n` `)` ` ` `{` ` ` `echo` `"Impossible"` `;` ` ` `}` ` ` `// Possible solution is stored in A[]` ` ` `else` ` ` `{` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$k` `; ++` `$i` `)` ` ` `echo` `$A` `[` `$i` `], ` `' '` `;` ` ` `}` `}` `// Driver code` `$n` `= 12;` `$k` `= 6;` `FindAllElements(` `$n` `, ` `$k` `);` `// This code is contributed by Ryuga` `?>` |

## Javascript

`<script>` `// Javascript implementation of the above approach` ` ` `// Function to print k numbers which are powers of two` `// and whose sum is equal to n` `function` `FindAllElements( n, k)` `{` ` ` `// Initialising the sum with k` ` ` `let sum = k;` ` ` ` ` `// Initialising an array A with k elements` ` ` `// and filling all elements with 1` ` ` `let A = ` `new` `Array(k).fill(1);` ` ` ` ` ` ` `for` `(let i = k - 1; i >= 0; --i) {` ` ` ` ` `// Iterating A[] from k-1 to 0` ` ` `while` `(sum + A[i] <= n) {` ` ` ` ` `// Update sum and A[i]` ` ` `// till sum + A[i] is less than equal to n` ` ` `sum += A[i];` ` ` `A[i] *= 2;` ` ` `}` ` ` `}` ` ` ` ` `// Impossible to find the combination` ` ` `if` `(sum != n) {` ` ` `document.write(` `"Impossible"` `);` ` ` `}` ` ` ` ` `// Possible solution is stored in A[]` ` ` `else` `{` ` ` `for` `(let i = 0; i < k; ++i)` ` ` `document.write(A[i] + ` `" "` `);` ` ` `}` `}` ` ` `// Driver Code` `let n = 12;` `let k = 6;` ` ` `FindAllElements(n, k);` `</script>` |

**Output**

1 1 1 1 4 4

**Time Complexity: **O(k*log_{2}(n-k))

**Auxiliary Space: **O(k)