Relationship between Data Mining and Machine Learning

There is no universal agreement on what “Data Mining” suggests that. The focus on the prediction of data is not always right with machine learning, although the emphasis on the discovery of properties of data can be undoubtedly applied to Data Mining always.

So, let’s begin with that: data processing may be a cross-disciplinary field that focuses on discovering properties of knowledge sets. (Forget concerning it being the analysis step of “knowledge discovery in databases” KDD, this was perhaps valid years agone, it’s not anymore).







There area unit different approaches to discovering the properties of knowledge sets. Machine Learning is one among them. Another one is just gazing the information sets victimization image techniques or Topological information Analysis.

On the opposite hand, Machine Learning may be a sub-field of knowledge science that focuses on planning algorithms that may learn from and create predictions on the information. Machine learning includes supervised Learning and Unsupervised Learning ways. Unsupervised ways take off from unlabelled information sets, so, in a way, they’re associated directly with looking for unknown properties in them (e.g., clusters or rules).

It is clear then that machine learning will be used for data processing. However, data processing will use different techniques besides or on high of machine learning.

To create things even a lot of sophisticated, currently, we have a replacement term, information Science, that’s competitory for attention, particularly with data processing and KDD. Even the SIGKDD cluster at ACM is slowly moving towards victimization information Science. In their web site, they currently describe themselves as “The community for data processing, information science, and analytics.” According to the predictions, KDD can disappear as a term pretty before lengthy edition, and data processing can merely merge into an information science.

Say the matter is to filter Outliers from your information (Anomaly detection), which might be a knowledge Mining task. One could build use of standard Machine Learning techniques like K-means algorithmic rule in Cluster analysis to spot these outliers and build the algorithmic rule to learn whereas doing this.

Now, these Outliers square measure ‘Previously Unknown, ’ and thus the task was same to be of information Mining, whereas Machine Learning comes into an image with the ‘Learning’ attribute of the algorithmic rule wont to find the outliers.

To “teach the machine” you wish information. As an example, if you would like to train a neural web for predicting the winner of the Superbowl, you can’t merely sort in UN agency won that games for the year. That’s not reaching to be enough. You will wish a lot of information, like the maximum amount as you’ll be able to get. You want for each stat for each player ideally for his or her entire careers. A lot of information you’ve got, a lot of the neural web will learn from the same details. I attempted coaching a neural network to form practical jokes and that I had like 10kb of information. I believed that was loads, then found a diary wherever somebody was victimization over 3mb. That’s why you wish data processing. If you’re thinking that of the pc as someone, however long will it take someone to be told to speak? They observe several conversations; they don’t merely hear ten conversations then as if by magic become fluent. Thus essentially, data processing is one among the earliest steps toward machine learning. You mine the info, then organize, normalize, etc. because of the initial stages of coaching a neural web.



My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.