Rectangular (or Pronic) Numbers

The numbers that can be arranged to form a rectangle are called Rectangular Numbers (also known as Pronic numbers). The first few rectangular numbers are:
0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 . . . . . .

Given a number n, find n-th rectangular number.

Examples:

Input : 1
Output : 2

Input : 4
Output : 20

Input : 5
Output : 30

The number 2 is a rectangular number because it is 1 row by 2 columns. The number 6 is a rectangular number because it is 2 rows by 3 columns, and the number 12 is a rectangular number because it is 3 rows by 4 columns.



If we observe these numbers carefully, we can notice that n-th rectangular number is n(n+1).

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP Program to find n-th rectangular number
#include <bits/stdc++.h>
using namespace std;
  
// Returns n-th rectangular number
int findRectNum(int n)
{
    return n * (n + 1);
}
  
// Driver code
int main()
{
    int n = 6;
    cout << findRectNum(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find n-th rectangular number
import java.io.*;
  
class GFG {
  
    // Returns n-th rectangular number
    static int findRectNum(int n)
    {
        return n * (n + 1);
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int n = 6;
        System.out.println(findRectNum(n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find n-th rectangular number
  
using System;
  
class GFG {
  
    // Returns n-th rectangular number
    static int findRectNum(int n)
    {
        return n * (n + 1);
    }
  
    // Driver code
    public static void Main()
    {
        int n = 6;
        Console.Write(findRectNum(n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to find n-th rectangular number
  
# Returns n-th rectangular number
def findRectNum(n):
    return n*(n + 1)
  
# Driver code 
n = 6
print (findRectNum(n))
  
# This code is contributed by Shreyanshi Arun.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find n-th
// rectangular number
  
// Returns n-th rectangular
// number
function findRectNum($n)
{
    return $n * ($n + 1);
}
  
    // Driver Code
    $n = 6;
    echo findRectNum($n);
      
// This code is contributed by ajit
?>

chevron_right



Output:

42

Check if a given number is Pronic | Efficient Approach

This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Improved By : jit_t

Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.