Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Check if all array elements can be converted to pronic numbers by rotating digits

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array arr[] of size N, the task is to check if it is possible to convert all of the array elements to a pronic number by rotating the digits of array elements any number of times.

Examples:

Input: {321, 402, 246, 299} 
Output: True 
Explanation: 
arr[0] → Right rotation once modifies arr[0] to 132 (= 11 × 12). 
arr[1] → Right rotation once modifies arr[0] to 240 (= 15 × 16). 
arr[2] → Right rotation twice modifies arr[2] to 462 (= 21 × 22). 
arr[3] → Right rotation twice modifies arr[3] to 992 (= 31 × 32).

Input: {433, 653, 402, 186}
Output: False

Approach: Follow the steps below to solve the problem:

  • Traverse the array and check for each array element, whether it is possible to convert it to a pronic number.
  • For each array element, apply all the possible rotations and check after each rotation, whether the generated number is pronic or not.
  • If it is not possible to convert any array element to a pronic number, print “False”.
  • Otherwise, print “True”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// function to check Pronic Number
bool isPronic(int x)
{
    for (int i = 0; i < (int)(sqrt(x)) + 1; i++)
    {
 
        // Checking Pronic Number
        // by multiplying consecutive
        // numbers
        if (x == i * (i + 1))
        {
            return true;
        }
    }
    return false;
}
 
// Function to check if any permutation
// of val is a pronic number or not
bool checkRot(int val)
{
 
    string temp = to_string(val);
    for (int i = 0; i < temp.length(); i++)
    {
        if (isPronic(stoi(temp)) == true)
        {
            return true;
        }
        temp = temp.substr(1, temp.size() - 1) + temp[0];
    }
    return false;
}
 
// Function to check if all array
// elements can be converted to
// a pronic number or not
bool check(int arr[], int N)
{
 
    // Traverse the array
    for (int i = 0; i < N; i++)
    {
 
        // If current element
        // cannot be converted
        // to a pronic number
        if (checkRot(arr[i]) == false)
        {
            return false;
        }
    }
    return true;
}
 
// Driven Program
int main()
{
   
    // Given array
    int arr[] = { 321, 402, 246, 299 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // function call
    cout << (check(arr, N) ? "True" : "False");
 
    return 0;
}
 
// This code is contributed by Kingash.

Java




// Java program for the above approach
 
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // function to check Pronic Number
  static boolean isPronic(int x)
  {
 
    for (int i = 0; i < (int)(Math.sqrt(x)) + 1; i++) {
 
      // Checking Pronic Number
      // by multiplying consecutive
      // numbers
      if (x == i * (i + 1)) {
        return true;
      }
    }
 
    return false;
  }
 
  // Function to check if any permutation
  // of val is a pronic number or not
  static boolean checkRot(int val)
  {
    String temp = Integer.toString(val);
    for (int i = 0; i < temp.length(); i++)
    {
      if (isPronic(Integer.parseInt(temp)) == true) {
        return true;
      }
 
      temp = temp.substring(1) + temp.charAt(0);
    }
    return false;
  }
 
  // Function to check if all array
  // elements can be converted to
  // a pronic number or not
  static boolean check(int arr[], int N)
  {
 
    // Traverse the array
    for (int i = 0; i < N; i++)
    {
 
      // If current element
      // cannot be converted
      // to a pronic number
      if (checkRot(arr[i]) == false)
      {
        return false;
      }
    }
    return true;
  }
 
  // Driver code
  public static void main(String[] args)
  {
 
    // Given array
    int arr[] = { 321, 402, 246, 299 };
    int N = arr.length;
 
    // Function call
    System.out.println(
      (check(arr, N) ? "True" : "False"));
  }
}
 
// This code is contributed by Kingash.

Python3




# Python implementation of
# the above approach
 
# Function to check if a number
# is a pronic number or not
def isPronic(n):
 
  for i in range(int(n**(1 / 2)) + 1):
    if i * (i + 1) == n:
      return True
 
  return False
 
# Function to check if any permutation
# of n is a pronic number or not
def checkRot(n):
 
  temp = str(n)
 
  for i in range(len(temp)):
 
    if isPronic(int(temp)):
      return True
 
    temp = temp[1:]+temp[0]
 
  return False
 
# Function to check if all array
# elements can be converted to
# a pronic number or not
def check(arr):
 
  # Traverse the array
  for i in arr:
 
    # If current element
    # cannot be converted
    # to a pronic number
    if not checkRot(i):
      return False
  return True
 
# Driver Code
arr = [ 321, 402, 246, 299 ]
print(check(arr))

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
  // function to check Pronic Number
  static bool isPronic(int x)
  {
    int val  = (int)Math.Sqrt(x);
    val += 1;
    for (int i = 0; i < val; i++)
    {
 
      // Checking Pronic Number
      // by multiplying consecutive
      // numbers
      if (x == i * (i + 1))
      {
        return true;
      }
    }
    return false;
  }
 
  // Function to check if any permutation
  // of val is a pronic number or not
  static bool checkRot(int val)
  {
 
    string temp = val.ToString();
    for (int i = 0; i < temp.Length; i++)
    {
      int a = Int32.Parse(temp);
      if (isPronic(a) == true)
      {
        return true;
      }
      temp = temp.Substring(1, temp.Length - 1) + temp[0];
    }
    return false;
  }
 
  // Function to check if all array
  // elements can be converted to
  // a pronic number or not
  static bool check(int []arr, int N)
  {
 
    // Traverse the array
    for (int i = 0; i < N; i++)
    {
 
      // If current element
      // cannot be converted
      // to a pronic number
      if (checkRot(arr[i]) == false)
      {
        return false;
      }
    }
    return true;
  }
 
  // Driven Program
  public static void Main()
  {
 
    // Given array
    int []arr = { 321, 402, 246, 299 };
    int N = arr.Length;
 
    // function call
    Console.WriteLine(check(arr, N) ? "True" : "False");
  }
}
 
// This code is contributed by ipg2016107.

Javascript




<script>
 
// Javascript program for the above approach
 
// function to check Pronic Number
function isPronic(x)
{
    for (var i = 0; i < parseInt(Math.sqrt(x)) + 1; i++)
    {
 
        // Checking Pronic Number
        // by multiplying consecutive
        // numbers
        if (x == i * (i + 1))
        {
            return true;
        }
    }
    return false;
}
 
// Function to check if any permutation
// of val is a pronic number or not
function checkRot(val)
{
 
    var temp = (val).toString();
    for (var i = 0; i < temp.length; i++)
    {
        if (isPronic(parseInt(temp)) == true)
        {
            return true;
        }
        temp = temp.substring(1) + temp[0];
    }
    return false;
}
 
// Function to check if all array
// elements can be converted to
// a pronic number or not
function check(arr, N)
{
 
    // Traverse the array
    for (var i = 0; i < N; i++)
    {
 
        // If current element
        // cannot be converted
        // to a pronic number
        if (checkRot(arr[i]) == false)
        {
            return false;
        }
    }
    return true;
}
 
// Driven Program
 
// Given array
var arr = [ 321, 402, 246, 299 ]
var N = arr.length;
 
// function call
document.write(check(arr, N) ? "True" : "False");
 
// This code is contributed by noob2000.
</script>

Output: 

True

 

Time Complexity: O(N * K * sqrt(val)), where N is the number of elements in the input array, K is the maximum length of a single element in the input array, and val is the maximum value of any element in the input array.
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 22 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials