Given an integer N and an integer D, the task is to reach N from 1 in minimum moves by either adding 1 or doubling the value, but the doubling can be done at most D times.
Examples:
Input: N = 20, D = 4
Output: 5
Explanation: The flow can be seen as 1 -> 2 -> 4 -> 5 -> 10 -> 20
Input: N = 10, D = 0
Output: 9
Approach: The task can be solved using recursion:
- Declare a variable to store the minimum moves as answer
- First check if the target is reached, if yes find store the minimum of current moves and answer in ans
- Then check if the doubling moves D has been exhausted, but target has not been reached yet,
- Then add the remaining moves as incrementing moves by adding (N-current_value) in current_moves.
- Find the minimum of current_moves and ans, and store in ans
- If the current_value has crossed N, return
- If none of the above cases match, recursively call the function to do both of the below one by one:
- double the current_value
- add 1 to current_value.
- Return the final ans.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
int ans = 0;
void move( int & N, int & D, long s,
int cd, int temp)
{
if (s == N) {
ans = min(ans, temp);
return ;
}
if (cd == D && s <= N) {
temp += (N - s);
ans = min(ans, temp);
return ;
}
if (s > N)
return ;
move(N, D, s * 2, cd + 1, temp + 1);
move(N, D, s + 1, cd, temp + 1);
}
int minMoves( int N, int D)
{
ans = N;
move(N, D, 1, 0, 0);
return ans;
}
int main()
{
int N = 20, D = 4;
cout << minMoves(N, D);
return 0;
}
|
Java
import java.io.*;
import java.lang.*;
import java.util.*;
class GFG {
static int ans = 0 ;
static void move( int N, int D, long s, int cd, int temp)
{
if (s == N) {
ans = Math.min(ans, temp);
return ;
}
if (cd == D && s <= N) {
temp += (N - s);
ans = Math.min(ans, temp);
return ;
}
if (s > N)
return ;
move(N, D, s * 2 , cd + 1 , temp + 1 );
move(N, D, s + 1 , cd, temp + 1 );
}
static int minMoves( int N, int D)
{
ans = N;
move(N, D, 1 , 0 , 0 );
return ans;
}
public static void main (String[] args) {
int N = 20 , D = 4 ;
System.out.print(minMoves(N, D));
}
}
|
Python3
ans = 0 ;
def move(N, D, s, cd, temp):
global ans;
if (s = = N):
ans = min (ans, temp);
return ;
if (cd = = D and s < = N):
temp + = (N - s);
ans = min (ans, temp);
return ;
if (s > N):
return ;
move(N, D, s * 2 , cd + 1 , temp + 1 );
move(N, D, s + 1 , cd, temp + 1 );
def minMoves(N, D):
global ans;
ans = N;
move(N, D, 1 , 0 , 0 );
return ans;
if __name__ = = '__main__' :
N = 20 ;
D = 4 ;
print (minMoves(N, D));
|
C#
using System;
class GFG {
static int ans = 0;
static void move( int N, int D, long s, int cd, int temp)
{
if (s == N) {
ans = Math.Min(ans, temp);
return ;
}
if (cd == D && s <= N) {
temp += ( int )(N - s);
ans = Math.Min(ans, temp);
return ;
}
if (s > N)
return ;
move(N, D, s * 2, cd + 1, temp + 1);
move(N, D, s + 1, cd, temp + 1);
}
static int minMoves( int N, int D)
{
ans = N;
move(N, D, 1, 0, 0);
return ans;
}
public static void Main () {
int N = 20, D = 4;
Console.Write(minMoves(N, D));
}
}
|
Javascript
<script>
let ans = 0;
function move(N, D, s,
cd, temp) {
if (s == N) {
ans = Math.min(ans, temp);
return ;
}
if (cd == D && s <= N) {
temp += (N - s);
ans = Math.min(ans, temp);
return ;
}
if (s > N)
return ;
move(N, D, s * 2, cd + 1, temp + 1);
move(N, D, s + 1, cd, temp + 1);
}
function minMoves(N, D) {
ans = N;
move(N, D, 1, 0, 0);
return ans;
}
let N = 20, D = 4;
document.write(minMoves(N, D));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 Feb, 2022
Like Article
Save Article