Given Q queries and P where P is a prime number, each query has two numbers N and R and the task is to calculate nCr mod p.
Constraints:
N <= 106
R <= 106
p is a prime number
Examples:
Input:
Q = 2 p = 1000000007
1st query: N = 15, R = 4
2nd query: N = 20, R = 3
Output:
1st query: 1365
2nd query: 1140
15!/(4!*(15-4)!)%1000000007 = 1365
20!/(20!*(20-3)!)%1000000007 = 1140
A naive approach is to calculate nCr using formulae by applying modular operations at any time. Hence time complexity will be O(q*n).
A better approach is to use fermat little theorem. According to it nCr can also be written as (n!/(r!*(n-r)!) ) mod which is equivalent to (n!*inverse(r!)*inverse((n-r)!) ) mod p. So, precomputing factorial of numbers from 1 to n will allow queries to be answered in O(log n). The only calculation that needs to be done is calculating inverse of r! and (n-r)!. Hence overall complexity will be q*( log(n)) .
A efficient approach will be to reduce the better approach to an efficient one by precomputing the inverse of factorials. Precompute inverse of factorial in O(n) time and then queries can be answered in O(1) time. Inverse of 1 to N natural number can be computed in O(n) time using Modular multiplicative inverse. Using recursive definition of factorial, the following can be written:
n! = n * (n-1) !
taking inverse on both side
inverse( n! ) = inverse( n ) * inverse( (n-1)! )
Since N’s maximum value is 106, precomputing values till 106 will do.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
#define ll long long
const int N = 1000001;
using namespace std;
ll factorialNumInverse[N + 1];
ll naturalNumInverse[N + 1];
ll fact[N + 1];
void InverseofNumber(ll p)
{
naturalNumInverse[0] = naturalNumInverse[1] = 1;
for ( int i = 2; i <= N; i++)
naturalNumInverse[i] = naturalNumInverse[p % i] * (p - p / i) % p;
}
void InverseofFactorial(ll p)
{
factorialNumInverse[0] = factorialNumInverse[1] = 1;
for ( int i = 2; i <= N; i++)
factorialNumInverse[i] = (naturalNumInverse[i] * factorialNumInverse[i - 1]) % p;
}
void factorial(ll p)
{
fact[0] = 1;
for ( int i = 1; i <= N; i++) {
fact[i] = (fact[i - 1] * i) % p;
}
}
ll Binomial(ll N, ll R, ll p)
{
ll ans = ((fact[N] * factorialNumInverse[R])
% p * factorialNumInverse[N - R])
% p;
return ans;
}
int main()
{
ll p = 1000000007;
InverseofNumber(p);
InverseofFactorial(p);
factorial(p);
ll N = 15;
ll R = 4;
cout << Binomial(N, R, p) << endl;
N = 20;
R = 3;
cout << Binomial(N, R, p) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG{
static int N = 1000001 ;
static long [] factorialNumInverse = new long [N + 1 ];
static long [] naturalNumInverse = new long [N + 1 ];
static long [] fact = new long [N + 1 ];
public static void InverseofNumber( int p)
{
naturalNumInverse[ 0 ] = naturalNumInverse[ 1 ] = 1 ;
for ( int i = 2 ; i <= N; i++)
naturalNumInverse[i] = naturalNumInverse[p % i] *
( long )(p - p / i) % p;
}
public static void InverseofFactorial( int p)
{
factorialNumInverse[ 0 ] = factorialNumInverse[ 1 ] = 1 ;
for ( int i = 2 ; i <= N; i++)
factorialNumInverse[i] = (naturalNumInverse[i] *
factorialNumInverse[i - 1 ]) % p;
}
public static void factorial( int p)
{
fact[ 0 ] = 1 ;
for ( int i = 1 ; i <= N; i++)
{
fact[i] = (fact[i - 1 ] * ( long )i) % p;
}
}
public static long Binomial( int N, int R, int p)
{
long ans = ((fact[N] * factorialNumInverse[R]) %
p * factorialNumInverse[N - R]) % p;
return ans;
}
public static void main (String[] args)
{
int p = 1000000007 ;
InverseofNumber(p);
InverseofFactorial(p);
factorial(p);
int n = 15 ;
int R = 4 ;
System.out.println(Binomial(n, R, p));
n = 20 ;
R = 3 ;
System.out.println(Binomial(n, R, p));
}
}
|
Python3
N = 1000001
factorialNumInverse = [ None ] * (N + 1 )
naturalNumInverse = [ None ] * (N + 1 )
fact = [ None ] * (N + 1 )
def InverseofNumber(p):
naturalNumInverse[ 0 ] = naturalNumInverse[ 1 ] = 1
for i in range ( 2 , N + 1 , 1 ):
naturalNumInverse[i] = (naturalNumInverse[p % i] *
(p - int (p / i)) % p)
def InverseofFactorial(p):
factorialNumInverse[ 0 ] = factorialNumInverse[ 1 ] = 1
for i in range ( 2 , N + 1 , 1 ):
factorialNumInverse[i] = (naturalNumInverse[i] *
factorialNumInverse[i - 1 ]) % p
def factorial(p):
fact[ 0 ] = 1
for i in range ( 1 , N + 1 ):
fact[i] = (fact[i - 1 ] * i) % p
def Binomial(N, R, p):
ans = ((fact[N] * factorialNumInverse[R]) % p *
factorialNumInverse[N - R]) % p
return ans
if __name__ = = '__main__' :
p = 1000000007
InverseofNumber(p)
InverseofFactorial(p)
factorial(p)
N = 15
R = 4
print (Binomial(N, R, p))
N = 20
R = 3
print (Binomial(N, R, p))
|
C#
using System;
class GFG{
static int N = 1000001;
static long [] factorialNumInverse = new long [N + 1];
static long [] naturalNumInverse = new long [N + 1];
static long [] fact = new long [N + 1];
static void InverseofNumber( int p)
{
naturalNumInverse[0] = naturalNumInverse[1] = 1;
for ( int i = 2; i <= N; i++)
naturalNumInverse[i] = naturalNumInverse[p % i] *
( long )(p - p / i) % p;
}
static void InverseofFactorial( int p)
{
factorialNumInverse[0] = factorialNumInverse[1] = 1;
for ( int i = 2; i <= N; i++)
factorialNumInverse[i] = (naturalNumInverse[i] *
factorialNumInverse[i - 1]) % p;
}
static void factorial( int p)
{
fact[0] = 1;
for ( int i = 1; i <= N; i++)
{
fact[i] = (fact[i - 1] * ( long )i) % p;
}
}
static long Binomial( int N, int R, int p)
{
long ans = ((fact[N] * factorialNumInverse[R]) %
p * factorialNumInverse[N - R]) % p;
return ans;
}
static void Main()
{
int p = 1000000007;
InverseofNumber(p);
InverseofFactorial(p);
factorial(p);
int n = 15;
int R = 4;
Console.WriteLine(Binomial(n, R, p));
n = 20;
R = 3;
Console.WriteLine(Binomial(n, R, p));
}
}
|
Javascript
<script>
var N = 1000001;
factorialNumInverse = Array(N+1).fill(0);
naturalNumInverse = Array(N+1).fill(0);
fact = Array(N+1).fill(0);
function InverseofNumber(p)
{
naturalNumInverse[0] = naturalNumInverse[1] = 1;
for ( var i = 2; i <= N; i++)
naturalNumInverse[i] = (naturalNumInverse[p % i] * (p - parseInt(p / i))) % p;
}
function InverseofFactorial(p)
{
factorialNumInverse[0] = factorialNumInverse[1] = 1;
for ( var i = 2; i <= N; i++)
factorialNumInverse[i] = ((naturalNumInverse[i] * factorialNumInverse[i - 1])) % p;
}
function factorial(p)
{
fact[0] = 1;
for ( var i = 1; i <= N; i++) {
fact[i] = (fact[i - 1] * i) % p;
}
}
function Binomial(N, R, p)
{
var ans = ((((fact[N] * factorialNumInverse[R])% p) * factorialNumInverse[N - R]))% p;
return ans;
}
p = 100000007;
InverseofNumber(p);
InverseofFactorial(p);
factorial(p);
N = 15;
R = 4;
document.write(Binomial(N, R, p)+ "<br>" )
N = 20;
R = 3;
document.write(Binomial(N, R, p));
</script>
|
Time Complexity: O(N) for precomputing and O(1) for every query.
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!