Skip to content
Related Articles

Related Articles

Improve Article

Python – Weibull Minimum Distribution in Statistics

  • Last Updated : 10 Jan, 2020

scipy.stats.weibull_min() is a Weibull minimum continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Weibull minimum continuous random variable

Code #1 : Creating Weibull minimum continuous random variable






# importing library
  
from scipy.stats import weibull_min 
    
numargs = weibull_min .numargs 
a, b = 0.2, 0.8
rv = weibull_min (a, b) 
    
print ("RV : \n", rv)  

Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9DA00E108

Code #2 : Weibull minimum continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = weibull_min .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(weibull_min.ppf(0.01, a, b),
                weibull_min.ppf(0.99, a, b), 10)
R = weibull_min.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 

Output :

Random Variates : 
 [12.76832063  0.80471316  0.80000281  0.80001071  0.80000427  2.1282417
  1.9774416  27.87159473  0.80431529  0.80000885]

Probability Distribution : 
 [0.00000000e+000 1.01939341e-099 1.15142533e-199 1.30055804e-299
 0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 

Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = weibull_min.pdf(x, a, b) 
y2 = weibull_min.pdf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :