Skip to content
Related Articles

Related Articles

Improve Article

Python – tensorflow.IndexedSlices.name Attribute

  • Last Updated : 20 Jul, 2020

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

name is used find the name of Indexed Slice. This only works when eager execution is disabled.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: tensorflow.IndexedSlices.name



Returns: It return the name of IndexedSlices.

Example 1: In this example eager execution is enables so it will raise AttribbuteError.

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input
data = tf.constant([[1, 2, 3], [4, 5, 6]])
  
# Printing the input
print('data: ', data)
  
# Calculating result
res = tf.IndexedSlices(data, [0], 1)
  
# Finding name
name = res.name
  
# Printing the result
print('Name: ', name)

Output:


data:  tf.Tensor(
[[1 2 3]
 [4 5 6]], shape=(2, 3), dtype=int32)

---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

<ipython-input-7-f07b895be576> in <module>()
     12 
     13 # Finding name
---> 14 name = res.name
     15 
     16 # Printing the result

1 frames

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in name(self)
   1121   def name(self):
   1122     raise AttributeError(
-> 1123         "Tensor.name is meaningless when eager execution is enabled.")
   1124 
   1125   @property

AttributeError: Tensor.name is meaningless when eager execution is enabled.

Example 2: In this example eager execution is disabled.

Python3




# Importing the library
import tensorflow as tf
  
# Initializing the input
data = tf.constant([[1, 2, 3], [4, 5, 6]])
  
# Printing the input
print('data: ', data)
  
# Calculating result
res = tf.IndexedSlices(data, [0], 1)
  
# Finding name
name = res.name
  
# Printing the result
print('Name: ', name)

Output:


data:  Tensor("Const_13:0", shape=(2, 3), dtype=int32)
Name:  Const_13:0




My Personal Notes arrow_drop_up
Recommended Articles
Page :