Python | sympy.crt() method

Last Updated : 17 Sep, 2019

With the help of sympy.crt() method, we can implement the Chinese Remainder Theorem in SymPy.

Syntax: crt(m, v)

Parameter:
m – It denotes a list of integers.
v – It denotes a list of integers.

Returns: Returns a tuple of integers where the first element is the required result.

Example #1:

 `# import crt() method from sympy ` `from` `sympy.ntheory.modular ``import` `crt ` ` `  `m ``=` `[``5``, ``7``] ` `v ``=` `[``1``, ``3``] ` ` `  `# Use crt() method  ` `crt_m_v ``=` `crt(m, v)  ` `     `  `print``(``"Result of the Chinese Remainder Theorem = {} "``.``format``(crt_m_v[``0``])) `

Output:

```Result of the Chinese Remainder Theorem = 31
```

Example #2:

 `# import crt() method from sympy ` `from` `sympy.ntheory.modular ``import` `crt ` ` `  `m ``=` `[``99``, ``97``, ``95``] ` `v ``=` `[``49``, ``76``, ``65``] ` ` `  `# Use crt() method  ` `crt_m_v ``=` `crt(m, v)  ` `     `  `print``(``"Result of the Chinese Remainder Theorem = {} "``.``format``(crt_m_v[``0``])) `

Output:

```Result of the Chinese Remainder Theorem = 639985
```