Skip to content
Related Articles

Related Articles

Python | sympy.binomial() method

View Discussion
Improve Article
Save Article
  • Last Updated : 07 Jul, 2019

With the help of sympy.binomial() method, we can find the number of ways to choose k items from a set of n distinct items. It is also often written as nCk, and is pronounced “n choose k”.

(1)    \begin{equation*}     \binom{N}{k} \end{equation*}

Syntax: binomial(N, K)

Parameters:
N – It denotes the number of items to choose from.
K – It denotes the number of items to choose.

Returns: Returns the number of ways to choose K items from a set of N distinct items

Example #1:




# import sympy 
from sympy import * 
  
N = 4
K = 2 
print("N = {}, K = {}".format(N, K))
   
# Use sympy.binomial() method 
comb = binomial(N, K)  
      
print("N choose K : {}".format(comb))  

Output:

N = 4, K = 2
N choose K : 6

Example #2:




# import sympy 
from sympy import * 
  
N, K = symbols('A B')
  
print("N = {}, K = {}".format(N, K))
   
# Use sympy.binomial() method 
comb = binomial(N, K)  
      
print("N choose K : {}".format(comb))  

Output:

N = A, K = B
N choose K : binomial(A, B)

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!