Python | Pandas dataframe.mul()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.mul() function return multiplication of dataframe and other element- wise. This function essentially does the same thing as the dataframe * other, but it provides an additional support to handle missing values in one of the inputs.

Syntax: DataFrame.mul(other, axis=’columns’, level=None, fill_value=None)



Parameters :
other : Series, DataFrame, or constant
axis : For Series input, axis to match Series index on
level : Broadcast across a level, matching Index values on the passed MultiIndex level
fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns : result : DataFrame

Example #1: Use mul() function to find the multiplication of a dataframe with a series.
Note : For multiplication with series, dataframe axis used for multiplication must match series index on.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the first dataframe 
df1=pd.DataFrame({"A":[14,4,5,4,1],
                  "B":[5,2,54,3,2],
                  "C":[20,20,7,3,8],
                  "D":[14,3,6,2,6]})
  
# Print the dataframe
df1

chevron_right


Let’s create the series

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# create series
sr = pd.Series([3, 2, 4, 5, 6])
  
# Print series
sr

chevron_right


Lets use the dataframe.mul() function to perform multiplication

filter_none

edit
close

play_arrow

link
brightness_4
code

# find multiplication over the index axis
df1.mul(sr, axis = 0)

chevron_right


Output :

 
Example #2: Use mul() function to find the multiplication of two datframes. One dataframe contains NA values.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the first dataframe 
df1=pd.DataFrame({"A":[14,4,5,4,1],
                  "B":[5,2,54,3,2],
                  "C":[20,20,7,3,8],
                  "D":[14,3,6,2,6]})
  
# Creating the second dataframe with <code>Na</code> value
df2=pd.DataFrame({"A":[12,4,5,None,1],
                  "B":[7,2,54,3,None],
                  "C":[20,16,11,3,8],
                  "D":[14,3,None,2,6]})
  
# Print the second dataframe
df2

chevron_right


Lets use the dataframe.mul() function to find the multiplication of two dataframes, also handle the missing values.

filter_none

edit
close

play_arrow

link
brightness_4
code

# fill the missing values with 100
df1.mul(df2, fill_value = 100)

chevron_right


Output :

Notice, all the missing value cells has been filled with 100 before multiplication



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.