Get the best out of our app
GeeksforGeeks App
Open App
Browser
Continue

# Python | Numpy polynomial legint() method

`np.legint()` method is used to integrate a Legendre series.

Syntax : `np.legint(c, m=1, k=[], lbnd=0, scl=1, axis=0)`
Parameters:
c :[array_like] Array of Legendre series coefficients.
m :[int] Order of integration, must be positive.Default is 1.
k :[[], list, scalar] Integration constant(s). The value of the first integral at lbnd is the first value in the list, the value of the second integral at lbnd is the second value, etc. If k == [] (the default), all constants are set to zero.
lband :[scalar, optional] The lower bound of the integral.Default is 0.
scl :[scalar, optional] For each integration the result is multiplied by scl before the integration constant is added.Default is 1.
axis :[scalar, optional] Axis over which the integral is taken.Default is 0.

Return : [ndarray] Legendre series coefficient array of the integral.

Code #1 :

 `# Python program explaining ``# numpy.legint() method  ``     ` `# importing numpy as np   ``# and numpy.polynomial.legendre module as geek  ``import` `numpy as np  ``import` `numpy.polynomial.legendre as geek ``     ` `# Legendre series coefficients ``   ` `s1 ``=` `(``2``, ``4``, ``8``)  ``     ` `# using np.legint() method  ``res ``=` `geek.legint(s1)  ``   ` `# Resulting legendre series ``print` `(res)  `

Output:

```[ 0.66666667  0.4         1.33333333  1.6       ]
```

Code #2 :

 `# Python program explaining ``# numpy.legint() method  ``     ` `# importing numpy as np   ``# and numpy.polynomial.legendre module as geek  ``import` `numpy as np  ``import` `numpy.polynomial.legendre as geek ``     ` `# Legendre series coefficients ``   ` `s1 ``=` `(``10``, ``20``, ``30``, ``40``, ``50``)  ``     ` `# using np.legint() method  ``res ``=` `geek.legint(s1)  ``   ` `# Resulting legendre series ``print` `(res)`

Output:

```[-1.66666667  4.          0.95238095  0.44444444  5.71428571  5.55555556]

```

My Personal Notes arrow_drop_up