Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Python | Numpy polynomial legint() method

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

np.legint() method is used to integrate a Legendre series.

Syntax : np.legint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Parameters:
c :[array_like] Array of Legendre series coefficients.
m :[int] Order of integration, must be positive.Default is 1.
k :[[], list, scalar] Integration constant(s). The value of the first integral at lbnd is the first value in the list, the value of the second integral at lbnd is the second value, etc. If k == [] (the default), all constants are set to zero.
lband :[scalar, optional] The lower bound of the integral.Default is 0.
scl :[scalar, optional] For each integration the result is multiplied by scl before the integration constant is added.Default is 1.
axis :[scalar, optional] Axis over which the integral is taken.Default is 0.

Return : [ndarray] Legendre series coefficient array of the integral.

Code #1 :




# Python program explaining 
# numpy.legint() method  
      
# importing numpy as np   
# and numpy.polynomial.legendre module as geek  
import numpy as np  
import numpy.polynomial.legendre as geek 
      
# Legendre series coefficients 
    
s1 = (2, 4, 8)  
      
# using np.legint() method  
res = geek.legint(s1)  
    
# Resulting legendre series 
print (res)  

Output:

[ 0.66666667  0.4         1.33333333  1.6       ]

 

Code #2 :




# Python program explaining 
# numpy.legint() method  
      
# importing numpy as np   
# and numpy.polynomial.legendre module as geek  
import numpy as np  
import numpy.polynomial.legendre as geek 
      
# Legendre series coefficients 
    
s1 = (10, 20, 30, 40, 50)  
      
# using np.legint() method  
res = geek.legint(s1)  
    
# Resulting legendre series 
print (res)

Output:

[-1.66666667  4.          0.95238095  0.44444444  5.71428571  5.55555556]


My Personal Notes arrow_drop_up
Last Updated : 30 Jan, 2020
Like Article
Save Article
Similar Reads
Related Tutorials