numpy.sum() in Python

numpy.sum(arr, axis, dtype, out) : This function returns the sum of array elements over the specified axis.

Parameters :
arr : input array.
axis : axis along which we want to calculate the sum value. Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column and axis = 1 means working along the row.
out : Different array in which we want to place the result. The array must have same dimensions as expected output. Default is None.
initial : [scalar, optional] Starting value of the sum.

Return : Sum of the array elements (a scalar value if axis is none) or array with sum values along the specified axis.

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.sum() method
import numpy as np 
       
# 1D array 
arr = [20, 2, .2, 10, 4]  
   
print("\nSum of arr : ", np.sum(arr)) 
   
print("Sum of arr(uint8) : ", np.sum(arr, dtype = np.uint8)) 
print("Sum of arr(float32) : ", np.sum(arr, dtype = np.float32))
   
print ("\nIs np.sum(arr).dtype == np.uint : "
       np.sum(arr).dtype == np.uint) 
  
print ("Is np.sum(arr).dtype == np.float : "
       np.sum(arr).dtype == np.float

chevron_right


Output:



Sum of arr :  36.2
Sum of arr(uint8) :  36
Sum of arr(float32) :  36.2

Is np.sum(arr).dtype == np.uint :  False
Is np.sum(arr).dtype == np.uint :  True

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.sum() method
import numpy as np 
       
# 2D array 
arr = [[14, 17, 12, 33, 44],   
       [15, 6, 27, 8, 19],  
       [23, 2, 54, 1, 4,]]  
   
print("\nSum of arr : ", np.sum(arr)) 
   
print("Sum of arr(uint8) : ", np.sum(arr, dtype = np.uint8)) 
print("Sum of arr(float32) : ", np.sum(arr, dtype = np.float32))
   
print ("\nIs np.sum(arr).dtype == np.uint : "
                 np.sum(arr).dtype == np.uint) 
  
print ("Is np.sum(arr).dtype == np.uint : "
              np.sum(arr).dtype == np.float

chevron_right


Output:

Sum of arr :  279
Sum of arr(uint8) :  23
Sum of arr(float32) :  279.0

Is np.sum(arr).dtype == np.uint :  False
Is np.sum(arr).dtype == np.uint :  False

 
Code #3:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.sum() method 
       
import numpy as np 
       
# 2D array  
arr = [[14, 17, 12, 33, 44],   
       [15, 6, 27, 8, 19],  
       [23, 2, 54, 1, 4,]]  
   
print("\nSum of arr : ", np.sum(arr)) 
print("Sum of arr(axis = 0) : ", np.sum(arr, axis = 0)) 
print("Sum of arr(axis = 1) : ", np.sum(arr, axis = 1))
  
print("\nSum of arr (keepdimension is True): \n",
      np.sum(arr, axis = 1, keepdims = True))

chevron_right


Output:

Sum of arr :  279
Sum of arr(axis = 0) :  [52 25 93 42 67]
Sum of arr(axis = 1) :  [120  75  84]

Sum of arr (keepdimension is True): 
 [[120]
 [ 75]
 [ 84]]



My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : HenryMoore