scipy.stats.invweibull() is an inverted weibull continuous random variable that is defined with a standard format and some shape parameters to complete its specification
Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).
Results : Inverse weibull continuous random variable
Code #1 : Creating inverted weibull continuous random variable
from scipy.stats import invweibull
numargs = invweibull.numargs
[a] = [ 0.6 , ] * numargs
rv = invweibull(a)
print ( "RV : \n" , rv)
|
Output :
RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D4EAE9C8
Code #2 : inverted weibull continuous variates and probability distribution
import numpy as np
quantile = np.arange ( 0.01 , 1 , 0.1 )
R = invweibull.rvs(a, scale = 2 , size = 10 )
print ( "Random Variates : \n" , R)
R = invweibull.pdf(a, quantile, loc = 0 , scale = 1 )
print ( "\nProbability Distribution : \n" , R)
|
Output :
Random Variates :
[ 2.46502056 32.97160826 8.65843435 1.21357636 0.22162243 1.05724138
7.5574935 0.0624836 0.83384033 17.29417907]
Probability Distribution :
[0.00613124 0.06733615 0.12799203 0.18757349 0.24553408 0.30131353
0.35434638 0.40407156 0.44994318 0.49144206]
Code #3 : Graphical Representation.
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace( 0 , np.minimum(rv.dist.b, 3 ))
print ( "Distribution : \n" , distribution)
plot = plt.plot(distribution, rv.pdf(distribution))
|
Output :
Distribution :
[0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939
0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327
1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408
2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
2.93877551 3. ]


Code #4 : Varying Positional Arguments
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace( 0 , 5 , 100 )
y1 = invweibull .pdf(x, 1 , 3 )
y2 = invweibull .pdf(x, 1 , 4 )
plt.plot(x, y1, "*" , x, y2, "r--" )
|
Output :