Program to find total number of edges in a Complete Graph
Given N number of vertices of a Graph. The task is to find the total number of edges possible in a complete graph of N vertices.
Complete Graph: A Complete Graph is a graph in which every pair of vertices is connected by an edge.
Examples:
Input : N = 3 Output : Edges = 3 Input : N = 5 Output : Edges = 10
The total number of possible edges in a complete graph of N vertices can be given as,
Total number of edges in a complete graph of N vertices = ( n * ( n – 1 ) ) / 2
Example 1: Below is a complete graph with N = 5 vertices.
The total number of edges in the above complete graph = 10 = (5)*(5-1)/2.
Below is the implementation of the above idea:
C++
// C++ implementation to find the // number of edges in a complete graph #include <bits/stdc++.h> using namespace std; // Function to find the total number of // edges in a complete graph with N vertices int totEdge( int n) { int result = 0; result = (n * (n - 1)) / 2; return result; } // Driver Code int main() { int n = 6; cout << totEdge(n); return 0; } |
Java
// Java implementation to find the // number of edges in a complete graph class GFG { // Function to find the total number of // edges in a complete graph with N vertices static int totEdge( int n) { int result = 0 ; result = (n * (n - 1 )) / 2 ; return result; } // Driver Code public static void main(String []args) { int n = 6 ; System.out.println(totEdge(n)); } } |
Python 3
# Python 3 implementation to # find the number of edges # in a complete graph # Function to find the total # number of edges in a complete # graph with N vertices def totEdge(n) : result = (n * (n - 1 )) / / 2 return result # Driver Code if __name__ = = "__main__" : n = 6 print (totEdge(n)) # This code is contributed # by ANKITRAI1 |
C#
// C# implementation to find // the number of edges in a // complete graph using System; class GFG { // Function to find the total // number of edges in a complete // graph with N vertices static int totEdge( int n) { int result = 0; result = (n * (n - 1)) / 2; return result; } // Driver Code public static void Main() { int n = 6; Console.Write(totEdge(n)); } } // This code is contributed // by ChitraNayal |
PHP
<?php // PHP implementation to find // the number of edges in a // complete graph // Function to find the total // number of edges in a complete // graph with N vertices function totEdge( $n ) { $result = 0; $result = ( $n * ( $n - 1)) / 2; return $result ; } // Driver Code $n = 6; echo totEdge( $n ); // This code is contributed // by Shivi_Aggarwal ?> |
Javascript
<script> // Javascript implementation to find the // number of edges in a complete graph // Function to find the total number of // edges in a complete graph with N vertices function totEdge(n) { var result = 0; result = (n * (n - 1)) / 2; return result; } // Driver Code var n = 6; document.write( totEdge(n)); </script> |
Output:
15