# Program for N-th term of Arithmetic Progression series

Given first term (a), common difference (d) and a integer N of the Arithmetic Progression series, the task is to find Nthterm of the series.

Examples :

```Input : a = 2 d = 1 N = 5
Output :
The 5th term of the series is : 6

Input : a = 5 d = 2 N = 10
Output :
The 10th term of the series is : 23
```

Approach:

We know the Arithmetic Progression series is like = 2, 5, 8, 11, 14 …. …
In this series 2 is the stating term of the series .
Common difference = 5 – 2 = 3 (Difference common in the series).
so we can write the series as :

t1 = a1
t2 = a1 + (2-1) * d
t3 = a1 + (3-1) * d
.
.
.
tN = a1 + (N-1) * d

To find the Nth term in the Arithmetic Progression series we use the simple formula .

`TN = a1 + (N-1) * d`

## C++

 `// CPP Program to find nth term of  ` `// Arithmetic progression ` `#include ` `using` `namespace` `std; ` ` `  `int` `Nth_of_AP(``int` `a, ``int` `d, ``int` `N) ` `{  ` `    ``// using formula to find the  ` `    ``// Nth term t(n) = a(1) + (n-1)*d ` `    ``return` `(a + (N - 1) * d); ` `     `  `} ` ` `  `// Driver code ` `int` `main()  ` `{ ` `    ``// starting number ` `    ``int` `a = 2;  ` `     `  `    ``// Common difference ` `    ``int` `d = 1;  ` `     `  `    ``// N th term to be find ` `    ``int` `N = 5;  ` `     `  `    ``// Display the output ` `    ``cout << ``"The "``<< N  ` `         ``<<``"th term of the series is : "` `         ``<< Nth_of_AP(a,d,N); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find nth term ` `// of Arithmetic progression ` `import` `java.io.*; ` `import` `java.lang.*; ` ` `  `class` `GFG  ` `{ ` `    ``public` `static` `int` `Nth_of_AP(``int` `a,  ` `                                ``int` `d,  ` `                                ``int` `N) ` `    ``{  ` `        ``// using formula to find the Nth ` `        ``// term t(n) = a(1) + (n-1)*d ` `        ``return` `( a + (N - ``1``) * d ); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{  ` `        ``// starting number ` `        ``int` `a = ``2``;  ` `         `  `        ``// Common difference ` `        ``int` `d = ``1``;  ` `         `  `        ``// N th term to be find ` `        ``int` `N = ``5``;  ` ` `  `        ``// Display the output ` `        ``System.out.print(``"The "``+ N +  ` `                         ``"th term of the series is : "` `+ ` `                          ``Nth_of_AP(a, d, N)); ` `    ``} ` `} `

## Python3

 `# Python 3 Program to ` `# find nth term of  ` `# Arithmetic progression ` ` `  `def` `Nth_of_AP(a, d, N) : ` ` `  `    ``# using formula to find the  ` `    ``# Nth term t(n) = a(1) + (n-1)*d ` `    ``return` `(a ``+` `(N ``-` `1``) ``*` `d) ` `      `  `  `  `# Driver code ` `a ``=` `2`  `# starting number ` `d ``=` `1`  `# Common difference ` `N ``=` `5`  `# N th term to be find ` `  `  `# Display the output ` `print``( ``"The "``, N ,``"th term of the series is : "``, ` `       ``Nth_of_AP(a, d, N)) ` ` `  ` `  ` `  `# This code is contributed ` `# by Nikita Tiwari. `

## C#

 `// C# program to find nth term ` `// of Arithmetic progression ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `    ``public` `static` `int` `Nth_of_AP(``int` `a,  ` `                                ``int` `d,  ` `                                ``int` `N) ` `    ``{  ` `         `  `        ``// using formula to find the Nth ` `        ``// term t(n) = a(1) + (n-1)*d ` `        ``return` `( a + (N - 1) * d ); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main()  ` `    ``{  ` `        ``// starting number ` `        ``int` `a = 2;  ` `         `  `        ``// Common difference ` `        ``int` `d = 1;  ` `         `  `        ``// N th term to be find ` `        ``int` `N = 5;  ` ` `  `        ``// Display the output ` `        ``Console.WriteLine(``"The "``+ N +  ` `                          ``"th term of the series is : "` `+ ` `                           ``Nth_of_AP(a, d, N)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output :

```The 5th term of the series is : 6
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : jit_t

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.