HCF (Highest Common Factor) or GCD (Greatest Common Divisor) of two numbers is the largest number that divides both of them.

For example, GCD of 20 and 28 is 4, and GCD of 98 and 56 is 14.
We have discussed the recursive solution in the below post. Recursive program to find GCD or HCF of two numbers
Below is the iterative implementation of Euclid’s algorithm
C++
#include <bits/stdc++.h>
using namespace std;
int hcf( int a, int b)
{
if (a == 0)
return b;
else if (b == 0)
return a;
while (a != b) {
if (a > b)
a = a - b;
else
b = b - a;
}
return a;
}
int main()
{
int a = 60, b = 96;
cout << hcf(a, b) << endl;
return 0;
}
|
C
#include <stdio.h>
int hcf( int a, int b)
{
if (a == 0)
return b;
else if (b == 0)
return a;
while (a != b) {
if (a > b)
a = a - b;
else
b = b - a;
}
return a;
}
int main()
{
int a = 60, b = 96;
printf ( "%d\n" , hcf(a, b));
return 0;
}
|
Java
import java.util.*;
class GFG {
static int hcf( int a, int b)
{
if (a == 0 )
return b;
else if (b == 0 )
return a;
while (a != b) {
if (a > b)
a = a - b;
else
b = b - a;
}
return a;
}
public static void main(String[] args)
{
int a = 60 , b = 96 ;
System.out.println(hcf(a, b));
}
}
|
Python3
/ / Python program to find HCF of two
/ / numbers iteratively.
def hcf(a, b):
if (a = = 0 ):
return b
else if (b = = 0 ):
return a
while (a ! = b):
if (a > b):
a = a - b
else :
b = b - a
return a
a = 60
b = 96
print (hcf(a, b))
|
C#
using System;
class GFG {
static int hcf( int a, int b)
{
if (a == 0)
return b;
else if (b == 0)
return a;
while (a != b) {
if (a > b)
a = a - b;
else
b = b - a;
}
return a;
}
public static void Main()
{
int a = 60, b = 96;
Console.WriteLine(hcf(a, b));
}
}
|
PHP
<?php
function hcf( $a , $b )
{ if ( $a ==0)
return $b ;
else if ( $b ==0)
return $a ;
while ( $a != $b ) {
if ( $a > $b )
$a = $a - $b ;
else
$b = $b - $a ;
}
return $a ;
}
$a = 60; $b = 96;
echo hcf( $a , $b ), "\n" ;
?>
|
Javascript
<script>
function hcf(a, b)
{ if (a == 0)
return b;
else if (b == 0)
return a;
while (a != b)
{
if (a > b)
a = a - b;
else
b = b - a;
}
return a;
}
let a = 60, b = 96;
document.write(hcf(a, b) + "<br>" );
</script>
|
Output:
12
Time Complexity: O(max(a, b))
Auxiliary Space: O(1)
Please Login to comment...