Print all the super diagonal elements of the given square matrix

Given a square matrix mat[][] of size n * n. The task is to print all the elements which lie on the super-diagonal of the given matrix.

Examples:

Input: mat[][] = {
{1, 2, 3},
{3, 3, 4, },
{2, 4, 6}}
Output: 2 4



Input: mat[][] = {
{1, 2, 3, 4},
{3, 3, 4, 4},
{2, 4, 6, 3},
{1, 1, 1, 3}}
Output: 2 4 3

Approach: The super-diagonal of a square matrix is the set of elements that lies directly above the elements comprising the main diagonal. As for main diagonal elements, their indexes are like (i = j), for super-diagonal elements their indexes are as j = i + 1 (i denotes row and j denotes column).

Hence elements arr[0][1], arr[1][2], arr[2][3], arr[3][4], …. are the elements of super-diagonal.

Either traverse all elements of matrix and print only those where j = i + 1 which requires O(n2) time complexity or traverse only column from 1 to columnCount – 1 and print elements as arr[column – 1][column].

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
  
// Function to print the super diagonal
// elements of the given matrix
void printSuperDiagonal(int arr[R][C])
{
    for (int i = 1; i < C; i++) {
        cout << arr[i - 1][i] << " ";
    }
}
  
// Driver code
int main()
{
    int arr[R][C] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
  
    printSuperDiagonal(arr);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
import java.io.*; 
  
class GFG 
      
static int R = 4
static int C = 4
  
// Function to print the sub diagonal 
// elements of the given matrix 
static void printSubDiagonal(int arr[][]) 
    for (int i = 1; i < C; i++) 
    
            System.out.print(arr[i-1][i] + " "); 
    
  
// Driver code 
public static void main (String[] args) 
  
    int arr[][] = { { 1, 2, 3, 4 }, 
                    { 5, 6, 7, 8 }, 
                    { 9, 10, 11, 12 }, 
                    { 13, 14, 15, 16 } }; 
  
    printSubDiagonal(arr); 
  
  
// This code is contributed by mohit kumar 29 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
R = 4
C = 4
  
# Function to print the super diagonal 
# elements of the given matrix 
def printSuperDiagonal(arr) :
  
    for i in range(1, C) :
        print(arr[i - 1][i],end= " "); 
  
# Driver code 
if __name__ == "__main__" :
      
    arr = [ [ 1, 2, 3, 4 ], 
            [5, 6, 7, 8 ], 
            [ 9, 10, 11, 12 ], 
            [ 13, 14, 15, 16 ]]
    printSuperDiagonal(arr); 
      
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
      
lass GFG 
  
    static int R = 4; 
    static int C = 4; 
  
    // Function to print the sub diagonal 
    // elements of the given matrix 
    static void printSubDiagonal(int [,]arr) 
    
        for (int i = 1; i < C; i++) 
        
                Console.Write(arr[i-1,i] + " "); 
        
    
  
    // Driver code 
    public static void Main (String[] args) 
    
  
        int [,]arr = { { 1, 2, 3, 4 }, 
                        { 5, 6, 7, 8 }, 
                        { 9, 10, 11, 12 }, 
                        { 13, 14, 15, 16 } }; 
  
        printSubDiagonal(arr); 
    
  
/* This code is contributed by PrinciRaj1992 */

chevron_right


Output:

2 7 12


My Personal Notes arrow_drop_up

Discovering ways to develop a plane for soaring career goals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.