# Print all the sub diagonal elements of the given square matrix

Given a square matrix **mat[][]** of size **n * n**. The task is to print all the elements which lie on the sub-diagonal of the given matrix.

**Examples:**

Input:mat[][] = {

{1, 2, 3},

{3, 3, 4, },

{2, 4, 6}}

Output:3 4

Input:mat[][] = {

{1, 2, 3, 4},

{3, 3, 4, 4},

{2, 4, 6, 3},

{1, 1, 1, 3}}

Output:3 4 1

**Approach:** The sub-diagonal of a square matrix is the set of elements that lie directly below the elements comprising the main diagonal. As for main diagonal elements, their indexes are like (i = j), for sub-diagonal elements their indexes are as i = j + 1 (i denotes row and j denotes column).

Hence elements **arr[1][0], arr[2][1], arr[3][2], arr[4][3], ….** are the elements of sub-diagonal.

Either traverse all elements of matrix and print only those where i = j + 1 which requires O(n^{2}) time complexity or print traverse only row from 1 to rowCount – 1 and print elements as arr[row][row – 1].

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` `#define R 4 ` `#define C 4 ` ` ` `// Function to print the sub diagonal ` `// elements of the given matrix ` `void` `printSubDiagonal(` `int` `arr[R][C]) ` `{ ` ` ` `for` `(` `int` `i = 1; i < R; i++) { ` ` ` `cout << arr[i][i - 1] << ` `" "` `; ` ` ` `} ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `arr[R][C] = { { 1, 2, 3, 4 }, ` ` ` `{ 5, 6, 7, 8 }, ` ` ` `{ 9, 10, 11, 12 }, ` ` ` `{ 13, 14, 15, 16 } }; ` ` ` ` ` `printSubDiagonal(arr); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of the approach ` `import` `java.io.*; ` ` ` `class` `GFG ` `{ ` ` ` `static` `int` `R = ` `4` `; ` `static` `int` `C = ` `4` `; ` ` ` `// Function to print the sub diagonal ` `// elements of the given matrix ` `static` `void` `printSubDiagonal(` `int` `arr[][]) ` `{ ` ` ` `for` `(` `int` `i = ` `1` `; i < R; i++) ` ` ` `{ ` ` ` `System.out.print(arr[i][i - ` `1` `] + ` `" "` `); ` ` ` `} ` `} ` ` ` `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` ` ` ` ` `int` `arr[][] = { { ` `1` `, ` `2` `, ` `3` `, ` `4` `}, ` ` ` `{ ` `5` `, ` `6` `, ` `7` `, ` `8` `}, ` ` ` `{ ` `9` `, ` `10` `, ` `11` `, ` `12` `}, ` ` ` `{ ` `13` `, ` `14` `, ` `15` `, ` `16` `} }; ` ` ` ` ` `printSubDiagonal(arr); ` ` ` `} ` `} ` ` ` `// This code is contributed by ajit. ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach ` `R ` `=` `4` `C ` `=` `4` ` ` `# Function to print the sub diagonal ` `# elements of the given matrix ` `def` `printSubDiagonal(arr): ` ` ` ` ` `for` `i ` `in` `range` `(` `1` `, R): ` ` ` `print` `(arr[i][i ` `-` `1` `], end ` `=` `" "` `) ` ` ` `# Driver code ` `arr ` `=` `[[ ` `1` `, ` `2` `, ` `3` `, ` `4` `], ` ` ` `[ ` `5` `, ` `6` `, ` `7` `, ` `8` `], ` ` ` `[ ` `9` `, ` `10` `, ` `11` `, ` `12` `], ` ` ` `[ ` `13` `, ` `14` `, ` `15` `, ` `16` `]] ` ` ` `printSubDiagonal(arr); ` ` ` `# This code is contributed ` `# by Mohit Kumar ` |

*chevron_right*

*filter_none*

## C#

// C# implementation of the approach

using System;

class GFG

{

static int R = 4;

static int C = 4;

// Function to print the sub diagonal

// elements of the given matrix

static void printSubDiagonal(int[,] arr)

{

for (int i = 1; i < R; i++)
{
Console.Write(arr[i, i - 1] + " ");
}
}
// Driver code
public static void Main ()
{
int [,]arr = {{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 }};
printSubDiagonal(arr);
}
}
// This code is contributed by CodeMech.
[tabbyending]

**Output:**

5 10 15

## Recommended Posts:

- Print all the super diagonal elements of the given square matrix
- Program to swap upper diagonal elements with lower diagonal elements of matrix.
- Print matrix in diagonal pattern
- Print numbers in matrix diagonal pattern
- Reverse Diagonal elements of matrix
- Squares of Matrix Diagonal Elements
- Find the sum of the diagonal elements of the given N X N spiral matrix
- Program to convert the diagonal elements of the matrix to 0
- Filling diagonal to make the sum of every row, column and diagonal equal of 3x3 matrix
- Print maximum sum square sub-matrix of given size
- How to access elements of a Square Matrix
- Finding the maximum square sub-matrix with all equal elements
- Row-wise common elements in two diagonals of a square matrix
- Program to print elements of a Matrix row-wise skipping alternate elements
- Program to check diagonal matrix and scalar matrix

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.