Print all the sub diagonal elements of the given square matrix

Given a square matrix mat[][] of size n * n. The task is to print all the elements which lie on the sub-diagonal of the given matrix.

Examples:

Input: mat[][] = {
{1, 2, 3},
{3, 3, 4, },
{2, 4, 6}}
Output: 3 4

Input: mat[][] = {
{1, 2, 3, 4},
{3, 3, 4, 4},
{2, 4, 6, 3},
{1, 1, 1, 3}}
Output: 3 4 1

Approach: The sub-diagonal of a square matrix is the set of elements that lie directly below the elements comprising the main diagonal. As for main diagonal elements, their indexes are like (i = j), for sub-diagonal elements their indexes are as i = j + 1 (i denotes row and j denotes column).

Hence elements arr[1][0], arr[2][1], arr[3][2], arr[4][3], …. are the elements of sub-diagonal.

Either traverse all elements of matrix and print only those where i = j + 1 which requires O(n2) time complexity or print traverse only row from 1 to rowCount – 1 and print elements as arr[row][row – 1].

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
  
// Function to print the sub diagonal
// elements of the given matrix
void printSubDiagonal(int arr[R][C])
{
    for (int i = 1; i < R; i++) {
        cout << arr[i][i - 1] << " ";
    }
}
  
// Driver code
int main()
{
    int arr[R][C] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
  
    printSubDiagonal(arr);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.io.*;
  
class GFG
{
      
static int R = 4;
static int C = 4;
  
// Function to print the sub diagonal
// elements of the given matrix
static void printSubDiagonal(int arr[][])
{
    for (int i = 1; i < R; i++)
    {
            System.out.print(arr[i][i - 1] + " ");
    }
}
  
// Driver code
public static void main (String[] args)
{
  
    int arr[][] = { { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 },
                    { 13, 14, 15, 16 } };
  
    printSubDiagonal(arr);
  
}
}
  
// This code is contributed by ajit.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
R = 4
C = 4
  
# Function to print the sub diagonal
# elements of the given matrix
def printSubDiagonal(arr):
  
    for i in range(1, R):
        print(arr[i][i - 1], end = " ")
  
# Driver code
arr = [[ 1, 2, 3, 4 ],
       [ 5, 6, 7, 8 ],
       [ 9, 10, 11, 12 ],
       [ 13, 14, 15, 16 ]]
  
printSubDiagonal(arr);
  
# This code is contributed
# by Mohit Kumar

chevron_right


C#

// C# implementation of the approach
using System;
class GFG
{
static int R = 4;
static int C = 4;

// Function to print the sub diagonal
// elements of the given matrix
static void printSubDiagonal(int[,] arr)
{
for (int i = 1; i < R; i++) { Console.Write(arr[i, i - 1] + " "); } } // Driver code public static void Main () { int [,]arr = {{ 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 }}; printSubDiagonal(arr); } } // This code is contributed by CodeMech. [tabbyending]

Output:

5 10 15


My Personal Notes arrow_drop_up

Discovering ways to develop a plane for soaring career goals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.