Skip to content
Related Articles

Related Articles

Print all the sub diagonal elements of the given square matrix

Improve Article
Save Article
  • Last Updated : 13 Sep, 2022
Improve Article
Save Article

Given a square matrix mat[][] of size n * n. The task is to print all the elements which lie on the sub-diagonal of the given matrix.
Examples: 
 

Input: mat[][] = { 
{1, 2, 3}, 
{3, 3, 4, }, 
{2, 4, 6}} 
Output: 3 4
Input: mat[][] = { 
{1, 2, 3, 4}, 
{3, 3, 4, 4}, 
{2, 4, 6, 3}, 
{1, 1, 1, 3}} 
Output: 3 4 1 
 

 

Approach: The sub-diagonal of a square matrix is the set of elements that lie directly below the elements comprising the main diagonal. As for main diagonal elements, their indexes are like (i = j), for sub-diagonal elements their indexes are as i = j + 1 (i denotes row and j denotes column).
Hence elements arr[1][0], arr[2][1], arr[3][2], arr[4][3], …. are the elements of sub-diagonal.
Either traverse all elements of matrix and print only those where i = j + 1 which requires O(n2) time complexity or print traverse only row from 1 to rowCount – 1 and print elements as arr[row][row – 1].
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
 
// Function to print the sub diagonal
// elements of the given matrix
void printSubDiagonal(int arr[R][C])
{
    for (int i = 1; i < R; i++) {
        cout << arr[i][i - 1] << " ";
    }
}
 
// Driver code
int main()
{
    int arr[R][C] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
 
    printSubDiagonal(arr);
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
static int R = 4;
static int C = 4;
 
// Function to print the sub diagonal
// elements of the given matrix
static void printSubDiagonal(int arr[][])
{
    for (int i = 1; i < R; i++)
    {
            System.out.print(arr[i][i - 1] + " ");
    }
}
 
// Driver code
public static void main (String[] args)
{
 
    int arr[][] = { { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 },
                    { 13, 14, 15, 16 } };
 
    printSubDiagonal(arr);
 
}
}
 
// This code is contributed by ajit.

Python3




# Python3 implementation of the approach
R = 4
C = 4
 
# Function to print the sub diagonal
# elements of the given matrix
def printSubDiagonal(arr):
 
    for i in range(1, R):
        print(arr[i][i - 1], end = " ")
 
# Driver code
arr = [[ 1, 2, 3, 4 ],
       [ 5, 6, 7, 8 ],
       [ 9, 10, 11, 12 ],
       [ 13, 14, 15, 16 ]]
 
printSubDiagonal(arr);
 
# This code is contributed
# by Mohit Kumar

C#




// C# implementation of the approach
using System;
class GFG
{
    static int R = 4;
    static int C = 4;
     
    // Function to print the sub diagonal
    // elements of the given matrix
    static void printSubDiagonal(int[,] arr)
    {
        for (int i = 1; i < R; i++)
        {
                Console.Write(arr[i, i - 1] + " ");
        }
    }
     
    // Driver code
    public static void Main ()
    {
        int [,]arr = {{ 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 }};
     
        printSubDiagonal(arr);
    }
}
 
// This code is contributed by CodeMech.

Javascript




<script>
 
// Javascript implementation of the approach
var R = 4
var C = 4
 
// Function to print the sub diagonal
// elements of the given matrix
function printSubDiagonal(arr)
{
    for (var i = 1; i < R; i++) {
        document.write( arr[i][i - 1] + " ");
    }
}
 
// Driver code
var arr = [ [ 1, 2, 3, 4 ],
                  [ 5, 6, 7, 8 ],
                  [ 9, 10, 11, 12 ],
                  [ 13, 14, 15, 16 ] ];
printSubDiagonal(arr);
 
 
</script>

Output: 

5 10 15

 

Time complexity: O(R) where R is number of rows of given matrix

Auxiliary space: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!