Prime Fibonacci | TCS Mockvita 2020
Problem Description
Given two numbers N1 and N2.
- Find prime numbers between N1 and N2, then
- Make all possible unique combinations of numbers from the list of the prime numbers you found in step 1.
- From this new list, again find all prime numbers.
- Find smallest A and largest B number from the 2nd generated list, also count of this list.
- Consider smallest and largest number as the 1st and 2nd number to generate Fibonacci series respectively till the count (Number of primes in the 2nd list).
- Print the last number of a Fibonacci series as an output
Constraints
2 <= N1, N2 <= 100
N2 – N1 >= 35
Examples:
Input: N1 = 2, N2 = 40
Output: 13158006689
Explanation:
First prime list = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]Combination of all the primes = [23, 25, 27, 211, 213, 217, 219, 223, 229, 231, 32, 35, 37, 311, 313, 319, 323, 329, 331, 337, 52, 53, 57, 511, 513, 517, 519, 523, 529, 531, 537, 72, 73, 75, 711, 713, 717, 719, 723, 729, 731, 737, 112, 113, 115, 117, 1113, 1117, 1119, 1123, 1129, 1131, 1137, 132, 133, 135, 137, 1311, 1317, 1319, 1323, 1329, 1331, 1337, 172, 173, 175, 177, 1711, 1713, 1719, 1723, 1729, 1731, 1737, 192, 193, 195, 197, 1911, 1913, 1917, 1923, 1929, 1931, 1937, 232, 233, 235, 237, 2311, 2313, 2317, 2319, 2329, 2331, 2337, 292, 293, 295, 297, 2911, 2913, 2917, 2919, 2923, 2931, 2937, 312, 315, 317, 3111, 3113, 3117, 3119, 3123, 3129, 3137, 372, 373, 375, 377, 3711, 3713, 3717, 3719, 3723, 3729, 3731]
Second prime list=[193, 3137, 197, 2311, 3719, 73, 137, 331, 523, 1931, 719, 337, 211, 23, 1117, 223, 1123, 229, 37, 293, 2917, 1319, 1129, 233, 173, 3119, 113, 53, 373, 311, 313, 1913, 1723, 317]
smallest (A) = 23
largest (B) = 3719
Therefore, the last number of a Fibonacci series i.e. 34th Fibonacci number in the series that has 23 and 3719 as the first 2 numbers is 13158006689Input: N1 = 30, N2 = 70
Output: 2027041
Explanation:First prime list = [31, 37, 41, 43, 47, 53, 59, 61, 67]
Second prime list generated form combination of 1st prime list = [3137, 5953, 5347, 6761, 3761, 4337, 6737, 6131, 3767, 4759, 4153, 3167, 4159, 6143]
Smallest prime in 2nd list=3137
Largest prime in 2nd list=6761
Therefore, the last number of a Fibonacci series i.e. 14th Fibonacci number in the series that has 3137 and 6761 as the first 2 numbers is 2027041
Approach: The idea is to use Sieve of Eratosthenes to check that a particular number is a prime number or not in O(1) time. Therefore, Iterate over all the numbers from N1 to N2 and store all the prime numbers in that range in an array, and then using Nested Loop find all unique possible combinations of the prime numbers. Finally, find the prime numbers from all the combination and then the minimum and the maximum of those prime numbers. Using the minimum and the maximum prime numbers we can generate the Fibonacci series to compute the last term (Number of prime numbers in all the combinations) of the Fibonacci series.
Below is the implementation of the above approach:
C++
// C++ implementation to compute the // combination of every possible // prime numbers of the range #include <bits/stdc++.h> using namespace std; long long maxN = 1e5; // Sieve of Eratosthenes void sieve(vector< bool >& primes) { for ( long long num = 2; num * num < maxN; num++) { if (primes[num]) { for ( long long i = num * num; i < maxN; i += num) primes[i] = false ; } } } // Function to find the Nth term of // of the Fibonacci series long long solve( long long N1, long long N2) { vector< bool > primes(maxN, true ); // 1 in not prime primes[1] = false ; // generate all prime in range // using sieve of eratosthenes sieve(primes); vector<string> filteredPrimes; vector< long long > comb; set< long long > lst; // filter required primes and // put them into filteredPrimes // as strings for ( long long i = N1; i <= N2; i++) if (primes[i]) filteredPrimes.push_back( to_string(i)); // make all possible combinations for ( long long i = 0; i < ( long long )(filteredPrimes.size()); i++) { for ( long long j = 0; j < ( long long )(filteredPrimes.size()); j++) { if (i == j) continue ; string tmp = filteredPrimes[i] + filteredPrimes[j]; comb.push_back(stoi(tmp)); } } // Filter only prime numbers // for generated combinations for ( long long x : comb) if (primes[x]) lst.insert(x); auto it = lst.end(); it--; // take smallest and largest element long long a = *(lst.begin()), b = *it, c; // Now find last element // of fibonacci series for ( long long i = 3; i <= ( long long )(lst.size()); i++) { c = a + b; a = b; b = c; } return c; } // Driver Code int main() { long long N1 = 2, N2 = 40; cout << solve(N1, N2); return 0; } |
Java
// Java implementation to compute the // combination of every possible // prime numbers of the range import java.util.*; import java.util.stream.*; class GFG { static long maxN = 100000 ; // Sieve of Eratosthenes static void sieve(ArrayList<Boolean> primes) { for ( long num = 2 ; num * num < maxN; num++) { if (primes.get(( int )num)) { for ( long i = num * num; i < maxN; i += num) primes.set(( int )i, false ); } } } // Function to find the Nth term of // of the Fibonacci series static long solve( long N1, long N2) { ArrayList<Boolean> primes = new ArrayList<Boolean>(); for ( int i = 0 ; i < ( int )maxN; i++) primes.add( true ); // 1 in not prime primes.set( 1 , false ); // generate all prime in range // using sieve of eratosthenes sieve(primes); ArrayList<String> filteredPrimes = new ArrayList<String>(); ArrayList<Long> comb = new ArrayList<Long>(); HashSet<Long> lst = new HashSet<Long>(); long c = 0 ; // filter required primes and // put them into filteredPrimes // as strings for ( long i = N1; i <= N2; i++) if (primes.get(( int )i)) filteredPrimes.add(String.valueOf(i)); // make all possible combinations for ( long i = 0 ; i < ( long )(filteredPrimes.size()); i++) { for ( long j = 0 ; j < ( long )(filteredPrimes.size()); j++) { if (i == j) continue ; String tmp = filteredPrimes.get(( int )i) + filteredPrimes.get(( int )j); comb.add(Long.valueOf(tmp)); } } // Filter only prime numbers // for generated combinations for ( long x : comb) if (primes.get(( int )x)) lst.add(x); Iterator<Long> it = lst.iterator(); long [] lst1 = new long [lst.size()]; int i = 0 ; while (it.hasNext()) lst1[i++] = it.next(); Arrays.sort(lst1); // take smallest and largest element long a = 0 ; long b = lst1[lst1.length - 1 ]; // Now find last element // of fibonacci series for ( long j = 3 ; j <= ( long )(lst.size()); j++) { c = a + b; a = b; b = c; } return c; } // Driver Code public static void main(String[] args) { long N1 = 2 , N2 = 40 ; System.out.println(solve(N1, N2)); } } // This code is contributed by phasing17 |
Python3
# Python3 implementation to compute the # combination of every possible # prime numbers of the range maxN = 100000 ; # Sieve of Eratosthenes def sieve(primes): for num in range ( 2 , int (maxN * * 0.5 ) + 1 ): if (primes[num]): for i in range (num * num, maxN, num): primes[i] = False ; # Function to find the Nth term of # of the Fibonacci series def solve(N1, N2): primes = [ True for _ in range (maxN)] # 1 in not prime primes[ 1 ] = False ; # generate all prime in range # using sieve of eratosthenes sieve(primes); filteredPrimes = [] comb = [] lst = set () # filter required primes and # put them into filteredPrimes # as strings for i in range (N1, N2 + 1 ): if (primes[i]): filteredPrimes.append( str (i)) # make all possible combinations for i in range ( len (filteredPrimes)): for j in range ( len (filteredPrimes)): if (i = = j): continue ; tmp = filteredPrimes[i] + filteredPrimes[j]; comb.append( int (tmp)); # Filter only prime numbers # for generated combinations for i in range ( len (comb)): if (primes[comb[i]]): lst.add(comb[i]); # take smallest and largest element a = sorted (lst)[ 0 ] b = sorted (lst)[ - 1 ] c = 0 ; # Now find last element # of fibonacci series for i in range ( 3 , len (lst) + 1 ): c = a + b; a = b; b = c; return c; # Driver Code N1 = 2 ; N2 = 40 ; print (solve(N1, N2)); # The code is contributed by phasing17 |
C#
// C# implementation to compute the // combination of every possible // prime numbers of the range using System; using System.Linq; using System.Collections.Generic; class GFG { static long maxN = 100000; // Sieve of Eratosthenes static void sieve(List< bool > primes) { for ( long num = 2; num * num < maxN; num++) { if (primes[( int )num]) { for ( long i = num * num; i < maxN; i += num) primes[( int )i] = false ; } } } // Function to find the Nth term of // of the Fibonacci series static long solve( long N1, long N2) { List< bool > primes = new List< bool >(); for ( int i = 0; i < ( int )maxN; i++) primes.Add( true ); // 1 in not prime primes[1] = false ; // generate all prime in range // using sieve of eratosthenes sieve(primes); List< string > filteredPrimes = new List< string >(); List< long > comb = new List< long >(); HashSet< long > lst = new HashSet< long >(); long c = 0; // filter required primes and // put them into filteredPrimes // as strings for ( long i = N1; i <= N2; i++) if (primes[( int )i]) filteredPrimes.Add(Convert.ToString(i)); // make all possible combinations for ( long i = 0; i < ( long )(filteredPrimes.Count); i++) { for ( long j = 0; j < ( long )(filteredPrimes.Count); j++) { if (i == j) continue ; string tmp = filteredPrimes[( int )i] + filteredPrimes[( int )j]; comb.Add(Convert.ToInt32(tmp)); } } // Filter only prime numbers // for generated combinations foreach ( long x in comb) if (primes[( int )x]) lst.Add(x); var it = lst.Count; it--; long [] lst1 = lst.ToArray(); // take smallest and largest element long a = 0; long b = lst1.Max(); // Now find last element // of fibonacci series for ( long i = 3; i <= ( long )(lst.Count); i++) { c = a + b; a = b; b = c; } return c; } // Driver Code public static void Main( string [] args) { long N1 = 2, N2 = 40; Console.WriteLine(solve(N1, N2)); } } // This code is contributed by phasing17 |
Javascript
// JavaScript implementation to compute the // combination of every possible // prime numbers of the range const maxN = 1e5; // Sieve of Eratosthenes function sieve(primes) { for (let num = 2; num * num < maxN; num++) { if (primes[num] == true ) { for (let i = num * num; i < maxN; i += num){ primes[i] = false ; } } } } // Function to find the Nth term of // of the Fibonacci series function solve(N1, N2) { let primes = new Array(maxN).fill( true ); // 1 in not prime primes[1] = false ; // generate all prime in range // using sieve of eratosthenes sieve(primes); let filteredPrimes = new Array(); let comb = new Array(); let lst = new Set(); // filter required primes and // put them into filteredPrimes // as strings for (let i = N1; i <= N2; i++) if (primes[i] == true ) filteredPrimes.push(i.toString()); // make all possible combinations for (let i = 0; i < filteredPrimes.length; i++) { for (let j = 0; j < filteredPrimes.length; j++) { if (i == j) continue ; let tmp = filteredPrimes[i] + filteredPrimes[j]; comb.push(parseInt(tmp)); } } // Filter only prime numbers // for generated combinations for (let i = 0; i < comb.length; i++){ if (primes[comb[i]] == true ){ lst.add(comb[i]); } } // take smallest and largest element let a = [...lst].sort( function (a, b){ return a-b})[0]; let b = [...lst].sort( function (a, b){ return a-b})[lst.size - 1]; let c = 0; // Now find last element // of fibonacci series for (let i = 3; i <= lst.size; i++) { c = a + b; a = b; b = c; } return c; } // Driver Code let N1 = 2; let N2 = 40; console.log(solve(N1, N2)); // The code is contributed by Gautam goel (gautamgoel962) |
13158006689
Time Complexity: O( maxN × log(log(maxN)))
Auxiliary Space: O(maxN)
Please Login to comment...