Given a 4×4 binary matrix. Two players A and B are playing a game, at each step a player can select any rectangle with all 1’s in it and replace all 1’s with 0. The player that cannot select any rectangle loses the game. Predict the winner off the game assuming that they both play the game optimally and A starts the game.

**Examples:**

Input :

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 1Output :A

Step 1: Player A chooses the rectangle with a single one at position (1, 2), so the new matrix becomes

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1Step 2: Player B chooses the rectangle with a single one at position (1, 3), so the new matrix becomes

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1Step 3: Player A chooses the rectangle with a single one at position (4, 4), so the new matrix becomes

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0Step 4: Player B cannot move, hence A wins the game.

Input :

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1Output :B

**Approach: **The problem can be solved using sprague-grundy theorem. The base case for Sprague-Grundy is Grundy[0] = 0, which is all the positions in the matrix are filled with 0, then B wins it, hence 0. In grundy, recursively we call grundy function with all the states that are possible.

The 4×4 matrix can be represented as a binary 16 bit number which is 65535 in int, where every bit represents the position in a matrix. Below are the steps to solve the above problem.

- Convert the matrix into int val.
- Call the recursive function with val that generates the grundy value using memoization.
- Inside the recursive function, all the grundy states can be visited by generating all possible rectangles(using four for loops).
- Check the generated rectangle, if it is a rectangle of the matrix. Then this is a state to be visited by grundy.
- To get Grundy value using MEX, please see this.
- If the recursion return 0, then player B wins, else player A wins.

Below is the implementation of the above approach

`#include <bits/stdc++.h>` `using` `namespace` `std;` ` ` `// Gets the max value` `int` `getMex(` `const` `unordered_set<` `int` `>& s)` `{` ` ` `int` `mex = 0;` ` ` `while` `(s.find(mex) != s.end())` ` ` `mex++;` ` ` `return` `mex;` `}` ` ` `// Find check if the rectangle is a part of the` `// the original rectangle` `int` `checkOne(` `int` `mat, ` `int` `i, ` `int` `j, ` `int` `k, ` `int` `l)` `{` ` ` ` ` `// initially create the bitset` ` ` `// of original intValue` ` ` `bitset<16> m(mat);` ` ` ` ` `// Check if it is a part of the rectangle` ` ` `for` `(` `int` `x = i; x <= j; x++) {` ` ` `for` `(` `int` `y = k; y <= l; y++) {` ` ` `int` `pos = 15 - ((x * 4) + y);` ` ` ` ` `// If not set, then not part` ` ` `if` `(!m.test(pos)) {` ` ` `return` `-1;` ` ` `}` ` ` `m.reset(pos);` ` ` `}` ` ` `}` ` ` ` ` `// If part of rectangle` ` ` `// then convert to int again and return` ` ` `int` `res = m.to_ullong();` ` ` `return` `res;` `}` ` ` `// Recursive function to get the grundy value` `int` `getGrundy(` `int` `pos, ` `int` `grundy[])` `{` ` ` ` ` `// If state has been visited` ` ` `if` `(grundy[pos] != -1)` ` ` `return` `grundy[pos];` ` ` ` ` `// For obtaining the MEX value` ` ` `unordered_set<` `int` `> gSet;` ` ` ` ` `// Generate all the possible rectangles` ` ` `for` `(` `int` `i = 0; i <= 3; i++) {` ` ` `for` `(` `int` `j = i; j <= 3; j++) {` ` ` `for` `(` `int` `k = 0; k <= 3; k++) {` ` ` `for` `(` `int` `l = k; l <= 3; l++) {` ` ` ` ` `// check if it is part of the original` ` ` `// rectangle, if yes then get the int value` ` ` `int` `res = checkOne(pos, i, j, k, l);` ` ` ` ` `// If it is a part of original matrix` ` ` `if` `(res != -1) {` ` ` ` ` `// Store the grundy value` ` ` `// Memorize` ` ` `grundy[res] = getGrundy(res, grundy);` ` ` ` ` `// Find MEX` ` ` `gSet.insert(grundy[res]);` ` ` `}` ` ` `}` ` ` `}` ` ` `}` ` ` `}` ` ` ` ` `// Return the MEX` ` ` `return` `getMex(gSet);` `}` ` ` `// Conver the matrix to INT` `int` `toInt(` `int` `matrix[4][4])` `{` ` ` `int` `h = 0;` ` ` ` ` `// Traverse in the matrix` ` ` `for` `(` `int` `i = 0; i < 4; ++i)` ` ` `for` `(` `int` `j = 0; j < 4; ++j)` ` ` `h = 2 * h + matrix[i][j];` ` ` `return` `h;` `}` ` ` `// Driver Code` `int` `main()` `{` ` ` `int` `mat[4][4] = { { 0, 1, 1, 0 },` ` ` `{ 0, 0, 0, 0 },` ` ` `{ 0, 0, 0, 0 },` ` ` `{ 0, 0, 0, 1 } };` ` ` ` ` `// Get the int value of the matrix` ` ` `int` `intValue = toInt(mat);` ` ` ` ` `int` `grundy[intValue + 1];` ` ` ` ` `// Initially with -1` ` ` `// used for memoization` ` ` `memset` `(grundy, -1, ` `sizeof` `grundy);` ` ` ` ` `// Base case` ` ` `grundy[0] = 0;` ` ` ` ` `// If returned value is non-zero` ` ` `if` `(getGrundy(intValue, grundy))` ` ` `cout << ` `"Player A wins"` `;` ` ` `else` ` ` `cout << ` `"Player B wins"` `;` ` ` ` ` `return` `0;` `}` |

**Output:**

Player A wins

**Time Complexity:** O(N)**Auxiliary Space:** O(N)