Position of the K-th set bit in a number

Given two numbers N and K. The task is to find the index of the K-th set bit in the number from the right.

Note: Indexing in the binary representation starts from 0 from the right. For example in the binary number “000011”, the first set bit is at index 0 from right, and the second set bit is at index 1 from the right.

Examples:



Input: N = 15, K = 3
Output: 2
15 is "1111", hence the third bit is at index 2 from right. 

Input:  N = 19, K = 2
Output: 1
19 is "10011", hence the second set bit is at inex 1 from right. 

Approach: Initialize a counter 0, and increase it if the last bit is set in the number. For accessing the next bit, right shift the number by 1. When the counter’s value is equal to K, then we return the index of the number which was being incremented on every right shift.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns the Kth set bit
int FindIndexKthBit(int n, int k)
{
    int cnt = 0;
    int ind = 0;
  
    // Traverse in the binary
    while (n) {
  
        // Check if the last
        // bit is set or not
        if (n & 1)
            cnt++;
  
        // Check if count is equal to k
        // then return the index
        if (cnt == k)
            return ind;
  
        // Increase the index
        // as we move right
        ind++;
  
        // Right shift the number by 1
        n = n >> 1;
    }
  
    return -1;
}
  
// Driver Code
int main()
{
    int n = 15, k = 3;
    int ans = FindIndexKthBit(n, k);
    if (ans != -1)
        cout << ans;
    else
        cout << "No k-th set bit";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
  
class GFG
{
  
// Function that returns the Kth set bit
static int FindIndexKthBit(int n, int k)
{
    int cnt = 0;
    int ind = 0;
  
    // Traverse in the binary
    while (n > 0
    {
  
        // Check if the last
        // bit is set or not
        if ((n & 1 ) != 0)
            cnt++;
  
        // Check if count is equal to k
        // then return the index
        if (cnt == k)
            return ind;
  
        // Increase the index
        // as we move right
        ind++;
  
        // Right shift the number by 1
        n = n >> 1;
    }
  
    return -1;
}
  
// Driver Code
public static void main(String args[])
{
    int n = 15, k = 3;
    int ans = FindIndexKthBit(n, k);
    if (ans != -1)
        System.out.println(ans);
    else
        System.out.println("No k-th set bit");
}
}
  
// This code is contributed by 
// Surendra_Gangwar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function that returns the Kth set bit
def FindIndexKthBit(n, k):
  
    cnt, ind = 0, 0
      
    # Traverse in the binary
    while n > 0
  
        # Check if the last
        # bit is set or not
        if n & 1:
            cnt += 1
  
        # Check if count is equal to k
        # then return the index
        if cnt == k:
            return ind
  
        # Increase the index
        # as we move right
        ind += 1
  
        # Right shift the number by 1
        n = n >> 1
      
    return -1
  
# Driver Code
if __name__ == "__main__":
  
    n, k = 15, 3
    ans = FindIndexKthBit(n, k)
      
    if ans != -1:
        print(ans)
    else:
        print("No k-th set bit"
          
# This code is contributed by 
# Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
  
class GFG
{
  
// Function that returns the Kth set bit
static int FindIndexKthBit(int n, int k)
{
    int cnt = 0;
    int ind = 0;
  
    // Traverse in the binary
    while (n > 0) 
    {
  
        // Check if the last
        // bit is set or not
        if ((n & 1 ) != 0)
            cnt++;
  
        // Check if count is equal to k
        // then return the index
        if (cnt == k)
            return ind;
  
        // Increase the index
        // as we move right
        ind++;
  
        // Right shift the number by 1
        n = n >> 1;
    }
  
    return -1;
}
  
// Driver Code
public static void Main()
{
    int n = 15, k = 3;
    int ans = FindIndexKthBit(n, k);
    if (ans != -1)
        Console.WriteLine(ans);
    else
        Console.WriteLine("No k-th set bit");
}
}
  
// This code is contributed by 
// Code_Mech.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to implement 
// the above approach 
  
// Function that returns the Kth set bit 
function FindIndexKthBit($n, $k
    $cnt = 0; 
    $ind = 0; 
  
    // Traverse in the binary 
    while ($n
    
  
        // Check if the last 
        // bit is set or not 
        if ($n & 1) 
            $cnt++; 
  
        // Check if count is equal to k 
        // then return the index 
        if ($cnt == $k
            return $ind
  
        // Increase the index 
        // as we move right 
        $ind++; 
  
        // Right shift the number by 1 
        $n = $n >> 1; 
    
  
    return -1; 
  
// Driver Code 
$n = 15;
$k = 3; 
  
$ans = FindIndexKthBit($n, $k); 
  
if ($ans != -1) 
    echo $ans
else
    echo "No k-th set bit";
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

2


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.